cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002163 Decimal expansion of square root of 5.

Original entry on oeis.org

2, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 1

Views

Author

Keywords

Comments

Also the limiting ratio of Lucas(n)/Fibonacci(n). - Alexander Adamchuk, Oct 10 2007
Continued fraction expansion is 2 followed by {4} repeated. - Harry J. Smith, Jun 01 2009
This is the first Lagrange number. - Alonso del Arte, Dec 06 2011
Equals Tachiya's Product_{n > 0} (1 + 2/A000032(2^n)) = 4*Product_{n > 0} (1 - 1/A000032(2^n)). - Jonathan Sondow, Jan 11 2012
A computation similar, with that of the universal parabolic constant, performed on the curve cosh(x) with the parameters of the osculating parabola, gives as result 2*sinh(arccosh(3/2)), that is sqrt(5) instead of 2.2955871... for the parabola. - Jean-François Alcover, Jul 18 2013
Because sqrt(5) = -1 + 2*phi, with the golden section phi from A001622, this is an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Jan 08 2018
This constant appears in the theorem of Hurwitz on the best approximation of any irrational number with infinitely many rationals: |theta - h/k| < 1/(sqrt(5)*k^2). See Niven, also for the Hurwitz 1891 reference. - Wolfdieter Lang, May 27 2018
Diameter of a sphere whose surface area equals 5*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018

Examples

			2.236067977499789696409173668731276235440618359611525724270897245410520...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 203.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, Theorem 1.5, pp. 6, 14.
  • Clifford A. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 106.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

Cf. A040002 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(5); // Vincenzo Librandi, Feb 13 2020
  • Mathematica
    RealDigits[N[Sqrt[5],200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=sqrt(5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002163.txt", n, " ", d));  \\ Harry J. Smith, Jun 01 2009
    

Formula

e^(i*Pi) + 2*phi = sqrt(5).
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} 5*(2*n)!/(n!^2*3^(2*n+1)).
Equals Sum_{n>=0} 25*(2*n+1)!/(n!^2*3^(2*n+3)). (End)
Equals -1 + 2*phi, with phi = A001622. An integer number in the real quadratic number field Q(sqrt(5)). - Wolfdieter Lang, May 09 2018
Equals Sum_{k>=0} binomial(2*k,k)/5^k. - Amiram Eldar, Aug 03 2020
Equals 2*sin(Pi/5) * 2*sin(2*Pi/5). - Gary W. Adamson, Jul 14 2022
Equals w - w^2 - w^3 + w^4 where w = exp(2*Pi*i/5). - Alexander R. Povolotsky, Nov 23 2022
From Antonio Graciá Llorente, Apr 18 2024: (Start)
Equals Product_{k>=0} ((10*k + 2)(10*k + 4)(10*k + 6)(10*k + 8))/((10*k + 1)*(10*k + 3)*(10*k + 7)*(10*k + 9)).
Equals Product_{k>=1} A217562(k)/A045572(k).
Equals Product_{k>=0} (1/2)*(((4*k + 9)/(4*k + 1))^(1/2) + ((4*k + 1)/(4*k + 9))^(1/2)).
Equals Product_{k>=1} (phi^k + phi)/(phi^k + phi - 1), with phi = A001622.
Equals Product_{k>=0} (Fibonacci(2*k + 3) + (-1)^k)/(Fibonacci(2*k + 3) - (-1)^k). (End)

Extensions

Sequence corrected by Paul Zimmermann, Mar 15 1996
Additional comments from Jason Earls, Mar 26 2001