A002163 Decimal expansion of square root of 5.
2, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 1
Examples
2.236067977499789696409173668731276235440618359611525724270897245410520...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 203.
- W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
- Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, Theorem 1.5, pp. 6, 14.
- Clifford A. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 106.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- M. F. Jones, 22900D approximations to the square roots of the primes less than 100, Math. Comp., 22 (1968), 234-235.
- Jason Kimberley, Index of expansions of sqrt(d) in base b.
- D. Merrill, First million digits of square root of 5. [Broken link]
- Robert Nemiroff and Jerry Bonnell, The first 1 million digits of the square root of 5.
- Robert Nemiroff and Jerry Bonnell, Plouffe's Inverter, The first 1 million digits of the square root of 5.
- Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- Jonathan Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, arXiv:1106.4246 [math.NT], 2011; Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.
- Y. Tachiya, Transcendence of certain infinite products, J. Number Theory 125 (2007), 182-200.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, J. Int. Seq. 13 (2010) # 10.7.5, eq. (1).
- Index entries for algebraic numbers, degree 2.
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(5); // Vincenzo Librandi, Feb 13 2020
-
Mathematica
RealDigits[N[Sqrt[5],200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
-
PARI
default(realprecision, 20080); x=sqrt(5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002163.txt", n, " ", d)); \\ Harry J. Smith, Jun 01 2009
Formula
e^(i*Pi) + 2*phi = sqrt(5).
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} 5*(2*n)!/(n!^2*3^(2*n+1)).
Equals Sum_{n>=0} 25*(2*n+1)!/(n!^2*3^(2*n+3)). (End)
Equals -1 + 2*phi, with phi = A001622. An integer number in the real quadratic number field Q(sqrt(5)). - Wolfdieter Lang, May 09 2018
Equals Sum_{k>=0} binomial(2*k,k)/5^k. - Amiram Eldar, Aug 03 2020
Equals 2*sin(Pi/5) * 2*sin(2*Pi/5). - Gary W. Adamson, Jul 14 2022
Equals w - w^2 - w^3 + w^4 where w = exp(2*Pi*i/5). - Alexander R. Povolotsky, Nov 23 2022
From Antonio Graciá Llorente, Apr 18 2024: (Start)
Equals Product_{k>=0} ((10*k + 2)(10*k + 4)(10*k + 6)(10*k + 8))/((10*k + 1)*(10*k + 3)*(10*k + 7)*(10*k + 9)).
Equals Product_{k>=0} (1/2)*(((4*k + 9)/(4*k + 1))^(1/2) + ((4*k + 1)/(4*k + 9))^(1/2)).
Equals Product_{k>=1} (phi^k + phi)/(phi^k + phi - 1), with phi = A001622.
Equals Product_{k>=0} (Fibonacci(2*k + 3) + (-1)^k)/(Fibonacci(2*k + 3) - (-1)^k). (End)
Extensions
Sequence corrected by Paul Zimmermann, Mar 15 1996
Additional comments from Jason Earls, Mar 26 2001
Comments