A002237 Numbers k such that 15*2^k - 1 is prime.
1, 2, 4, 5, 10, 14, 17, 31, 41, 73, 80, 82, 116, 125, 145, 157, 172, 202, 224, 266, 289, 293, 463, 1004, 1246, 2066, 2431, 2705, 4622, 5270, 7613, 21727, 21962, 40742, 41054, 60622, 83263, 83669, 91457, 103940, 104177, 108124, 115327, 161453, 172714, 454681, 568780, 656264, 712294, 902474, 1084010, 1344313
Offset: 1
References
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
- Wilfrid Keller, List of primes k.2^n - 1 for k < 300
- Kosmaj, Riesel list k<300. Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime
- H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875.
- Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime
Crossrefs
Cf. A002258: 15*2^n+1 is prime.
Programs
-
PARI
for(n=1, 10^10, if(ispseudoprime(15<
Joerg Arndt, Feb 23 2014
Extensions
More terms from Hugo Pfoertner, Jun 29 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Comments