cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002321 Mertens's function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.

Original entry on oeis.org

1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, -2, -2, -1, -1, -1, -2, -3, -4, -4, -3, -2, -1, -1, -2, -1, 0, 0, -1, -2, -3, -3, -3, -2, -3, -3, -3, -3, -2, -2, -3, -3, -2, -2, -1, 0, -1, -1, -2, -1, -1, -1, 0, -1, -2, -2, -1, -2, -3, -3, -4, -3, -3, -3, -2, -3, -4, -4, -4
Offset: 1

Views

Author

Keywords

Comments

Partial sums of the Moebius function A008683.
Also determinant of n X n (0,1) matrix defined by A(i,j)=1 if j=1 or i divides j.
The first positive value of Mertens's function for n > 1 is for n = 94. The graph seems to show a negative bias for the Mertens function which is eerily similar to the Chebyshev bias (described in A156749 and A156709). The purported bias seems to be empirically approximated to - (6 / Pi^2) * (sqrt(n) / 4) (by looking at the graph) (see MathOverflow link, May 28 2012) where 6 / Pi^2 = 1 / zeta(2) is the asymptotic density of squarefree numbers (the squareful numbers having Moebius mu of 0). This would be a growth pattern akin to the Chebyshev bias. - Daniel Forgues, Jan 23 2011
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 06 2012
Soundararajan proves that, on the Riemann Hypothesis, a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^14), sharpening the well-known equivalence. - Charles R Greathouse IV, Jul 17 2015
Balazard & De Roton improve this (on the Riemann Hypothesis) to a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^k) for any k > 5/2, where the implied constant in the Vinogradov symbol depends on k. Saha & Sankaranarayanan reduce the exponent to 5/4 on additional hypotheses. - Charles R Greathouse IV, Feb 02 2023

Examples

			G.f. = x - x^3 - x^4 - 2*x^5 - x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10 - 2*x^11 - 2*x^12 - ...
		

References

  • E. Landau, Vorlesungen über Zahlentheorie, Chelsea, NY, Vol. 2, p. 157.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • F. Mertens, "Über eine zahlentheoretische Funktion", Akademie Wissenschaftlicher Wien Mathematik-Naturlich Kleine Sitzungsber, IIa 106, (1897), p. 761-830.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.1.
  • Biswajyoti Saha and Ayyadurai Sankaranarayanan, On estimates of the Mertens function, International Journal of Number Theory, Vol. 15, No. 02 (2019), pp. 327-337.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge, 1999, see p. 482.

Crossrefs

First column of A134541.
First column of A179287.

Programs

  • Haskell
    import Data.List (genericIndex)
    a002321 n = genericIndex a002321_list (n-1)
    a002321_list = scanl1 (+) a008683_list
    -- Reinhard Zumkeller, Jul 14 2014, Dec 26 2012
    
  • Magma
    [&+[MoebiusMu(k): k in [1..n]]: n in [1..81]]; // Bruno Berselli, Jul 12 2021
  • Maple
    with(numtheory); A002321 := n->add(mobius(k),k=1..n);
  • Mathematica
    Rest[ FoldList[ #1+#2&, 0, Array[ MoebiusMu, 100 ] ] ]
    Accumulate[Array[MoebiusMu,100]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = sum( k=1, n, moebius(k))
    
  • PARI
    a(n) = if( n<1, 0, matdet( matrix(n, n, i, j, j==1 || 0==j%i)))
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius
    def M(n): return sum(mobius(k) for k in range(1,n + 1))
    print([M(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002321(n):
        if n == 0:
            return 0
        c, j = n, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A002321(k1)
            j, k1 = j2, n//j2
        return j-c # Chai Wah Wu, Mar 30 2021
    

Formula

Assuming the Riemann hypothesis, a(n) = O(x^(1/2 + eps)) for every eps > 0 (Littlewood - see Landau p. 161).
Lambert series: Sum_{n >= 1} a(n)*(x^n/(1-x^n)-x^(n+1)/(1-x^(n+1))) = x and -1/x. - Mats Granvik, Sep 09 2010 and Sep 23 2010
a(n)+2 = A192763(n,1) for n>1, and A192763(1,k) for k>1 (conjecture). - Mats Granvik, Jul 10 2011
Sum_{k = 1..n} a(floor(n/k)) = 1. - David W. Wilson, Feb 27 2012
a(n) = Sum_{k = 1..n} tau_{-2}(k) * floor(n/k), where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 23 2013
a(n) = Sum_{k=1..A002088(n)} exp(2*Pi*i*A038566(k)/A038567(k-1)) where i is the imaginary unit. - Eric Desbiaux, Jul 31 2014
Schoenfeld proves that |a(n)| < 5.3*n/(log n)^(10/9) for n > 1. - Charles R Greathouse IV, Jan 17 2018
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x - Sum_{k>=2} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Aug 11 2021