A002372 Goldbach conjecture: number of decompositions of 2n into ordered sums of two odd primes.
0, 0, 1, 2, 3, 2, 3, 4, 4, 4, 5, 6, 5, 4, 6, 4, 7, 8, 3, 6, 8, 6, 7, 10, 8, 6, 10, 6, 7, 12, 5, 10, 12, 4, 10, 12, 9, 10, 14, 8, 9, 16, 9, 8, 18, 8, 9, 14, 6, 12, 16, 10, 11, 16, 12, 14, 20, 12, 11, 24, 7, 10, 20, 6, 14, 18, 11, 10, 16, 14, 15, 22, 11, 10, 24, 8, 16, 22, 9, 16, 20, 10
Offset: 1
Examples
2 has no such decompositions, so a(1) = 0. Idem for 4, whence a(2) = 0. 6 = 3+3, so a(3) = 1. 8 = 3+5 = 5+3, so a(4) = 2. 10 = 5+5 = 3+7 = 7+3, so a(5) = 3. 12 = 5+7 = 7+5; so a(6) = 2, etc.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 9.
- R. K. Guy, Unsolved problems in number theory, second edition, Springer-Verlag, 1994.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 2.8 (for Goldbach conjecture).
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 79, 80.
- N. Pipping, Neue Tafeln für das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln, Finska Vetenskaps-Societeten, Comment. Physico Math. 4 (No. 4, 1927), pp. 1-27.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. L. Stein and P. R. Stein, Tables of the Number of Binary Decompositions of All Even Numbers Less Than 200,000 into Prime Numbers and Lucky Numbers. Report LA-3106, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Sep 1964.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Peter B. Borwein, Stephen K. K. Choi, Greg Martin, Charles L. Samuels, Polynomials whose reducibility is related to the Goldbach conjecture, arXiv:1408.4881 [math.NT], 2014 (see R(N) on page 1).
- J. -M. Deshouillers, H. J. J. te Riele, Y. Saouter, New experimental results concerning the Goldbach conjecture, preprint, Centrum Wiskunde & Informatica, 1998.
- J. -M. Deshouillers, H. J. J. te Riele, Y. Saouter, New experimental results concerning the Goldbach conjecture, Algorithmic number theory (Portland, OR, 1998), 204-215, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998.
- G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1922.
- H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897 [math.NT], 2013-2014.
- Yan Kun, Li Hou Biao, Divisor Goldbach Conjecture and its Partition Number, arXiv:1603.05233 [math.NT], 2016.
- T. Oliveira e Silva, Goldbach conjecture verification.
- T. Oliveira e Silva, Gaps between consecutive primes.
- T. Oliveira e Silva, Tables of values of pi(x) and of pi2(x).
- T. Oliveira e Silva, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 2033-2060. - _Felix Fröhlich_, Jun 23 2014
- Jörg Richstein, Verifying the Goldbach conjecture up to 4 * 10^14, Math. Comput., 70 (2001), 1745-1749.
- Matti K. Sinisalo, Checking the Goldbach conjecture up to 4*10^11, Math. Comp. 61 (1993), pp. 931-934.
- Eric Weisstein's World of Mathematics, Goldbach Conjecture.
- A. Zaccagnini, Goldbach Variations: problems with prime numbers.
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Programs
-
Haskell
a002372 n = sum $ map (a010051 . (2*n -)) $ takeWhile (< 2*n) a065091_list -- Reinhard Zumkeller, Oct 19 2011
-
Magma
A002372 := func
; [A002372(n):n in[1..82]]; // Jason Kimberley, Sep 01 2011 -
Maple
a:=proc(n) local c,k; c:=0: for k from 1 to n do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: seq(a(n),n=1..82); # Emeric Deutsch, Jul 14 2004
-
Mathematica
For[lst={}; n=1, n<=100, n++, For[cnt=0; i=1, i<=2n-1, i++ If[OddQ[i]&&PrimeQ[i]&&PrimeQ[2n-i], cnt++ ]]; AppendTo[lst, cnt]]; lst (* second program: *) A002372[n_] := Module[{i = 0}, Do[If[PrimeQ[2 n - Prime@p], i++], {p, 2, PrimePi[2 n - 3]}]; i]; Array[A002372, 82] (* JungHwan Min, Aug 24 2016 *) i[n_] := If[PrimeQ[2 n - 1], 2 n - 1, 0]; A085090 = Array[i, 82]; r[n_] := Table[A085090[[k]] + A085090[[n - k + 1]], {k, 1, n}]; countzeros[l_List] := Sum[KroneckerDelta[0, k], {k, l}]; Table[n - 2 countzeros[A085090[[1 ;; n]]] + countzeros[r[n]], {n, 1, 82}] (* Fred Daniel Kline, Aug 13 2018 *) countPrimes[n_] := Sum[KroneckerDelta[True, PrimeQ[2 m - 1], PrimeQ[2 (n - m + 1) - 1]], {m, 1, n}]; Array[countPrimes, 82] (* Fred Daniel Kline, Oct 07 2018 *)
-
PARI
isop(n) = (n % 2) && isprime(n); a(n) = n*=2; sum(i=1, n-1, isop(i)*isop(n-i)); \\ Michel Marcus, Aug 22 2014 and May 28 2020
-
Python
from sympy import isprime, primerange def a(n): return sum([1 for p in primerange(3, 2*n-2) if isprime(2*n-p)]) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 23 2017
Formula
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 13 2002
Edited by M. F. Hasler, May 03 2019
Comments