cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002380 a(n) = 3^n reduced modulo 2^n.

Original entry on oeis.org

0, 1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291, 55105, 34243, 233801, 439259, 269201, 1856179, 3471385, 6219851, 1882337, 5647011, 50495465, 17268667, 186023729, 21200275, 63600825, 1264544299, 3793632897, 7085931395
Offset: 0

Views

Author

Keywords

Comments

A065554 lists the indices n such that a(n+1) = 3*a(n). - Benoit Cloitre, Apr 21 2003
a(n) = (fractional part of (3/2)^n without the decimal point)/5^n = A204544(n) / 5^n. - Michel Lagneau, Jan 25 2012

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. k^n mod (k-1)^n: this sequence (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

  • Haskell
    a002380 n = 3^n `mod` 2^n  -- Reinhard Zumkeller, Jul 11 2014
  • Maple
    a:=n->3^n mod(2^n): seq(a(n), n=0..33); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    Table[ PowerMod[3, n, 2^n], {n, 0, 33}] (* Robert G. Wilson v, Dec 14 2006 *)
    Table[ 3^n - 2^n * Floor[ (3/2)^n ], {n,0,33} ] (* Fred Daniel Kline, Oct 12 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n];
    Array[y, 33] (* Fred Daniel Kline, Dec 21 2017 *)
  • PARI
    concat([0],vector(55,n,lift(Mod(3,2^n)^n))) \\ Joerg Arndt, Oct 14 2017
    

Extensions

More terms from Jason Earls, Jul 29 2001