cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002432 Denominators of zeta(2*n)/Pi^(2*n).

Original entry on oeis.org

2, 6, 90, 945, 9450, 93555, 638512875, 18243225, 325641566250, 38979295480125, 1531329465290625, 13447856940643125, 201919571963756521875, 11094481976030578125, 564653660170076273671875, 5660878804669082674070015625, 62490220571022341207266406250
Offset: 0

Views

Author

Keywords

Comments

Also denominators in expansion of Psi(x).
For n >= 1 a(n) is always divisible by 3 (by the von Staudt-Clausen theorem, see A002445).
A comment due to G. Campbell: The original approach taken by Euler was to derive the infinite product for sin(Pi*x)/(Pi*x) equal to (1 - x^2/1^2) (1 - x^2/2^2)(1 - x^2/3^2) ... treating sin(Pi*x)/(Pi*x) as if it were a polynomial. Differentiating the logarithm of both sides and equating coefficients gives all of the zeta function values for 2, 4, 6, 8, .... - M. F. Hasler, Mar 29 2015
Note that 2n+1 divides a(n) for every n. If 2n+1 > 9 is composite, then (2n+1)^2 divides a(n). If 2n+1 is prime, then (2n+1)^2 does not divide a(n). My theorem: for n > 4, (2n+1)^2 divides a(n) if and only if the number 2n+1 is composite. - Thomas Ordowski, Nov 07 2022

Examples

			(zeta(2n)/Pi^(2n), n = 0, 1, 2, 3, ...) = (-1/2, 1/6, 1/90, 1/945, 1/9450, 1/93555, 691/638512875, 2/18243225, 3617/325641566250, ...), i.e.: zeta(0) = -1/2, zeta(2) = Pi^2/6, zeta(4) = Pi^4/90, zeta(6) = Pi^6/945, zeta(8) = Pi^8/9450, zeta(10) = Pi^10/93555, zeta(12) = Pi^12*691/638512875, ...
In Maple, series(Psi(x),x,20) gives -1*x^(-1) + (-gamma) + 1/6*Pi^2*x + (-Zeta(3))*x^2 + 1/90*Pi^4*x^3 + (-Zeta(5))*x^4 + 1/945*Pi^6*x^5 + (-Zeta(7))*x^6 + 1/9450*Pi^8*x^7 + (-Zeta(9))*x^8 + 1/93555*Pi^10*x^9 + ...
a(5) = 93555 = 10!/(2^9 * B(10)) = 3628800/(512*5/66). - _Frank Ellermann_, Apr 03 2020
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046988 (numerators), A006003.

Programs

  • Maple
    seq(denom(Zeta(2*n)/Pi^(2*n)),n=0..24); # Martin Renner, Sep 07 2016
    A002432List := proc(len) series(-x*cot(x)/2, x, 2*len+1):
    seq(denom(coeff(%, x, n)), n=0..2*len-1, 2) end:
    A002432List(17); # Peter Luschny, Jun 07 2020
  • Mathematica
    Table[Denominator[Zeta[2 n]/Pi^(2 n)], {n, 0, 30}] (* Artur Jasinski, Mar 11 2010 *)
    Denominator[Zeta[2*Range[0, 20]]] (* Harvey P. Dale, Sep 05 2013 *)
  • PARI
    a(n)=numerator(bestappr(Pi^(2*n)/zeta(2*n))) \\ Requires sufficient realprecision. The standard value of 38 digits yields erroneous values for n>9. \p99 is more than enough to get the 3 lines of displayed data. - M. F. Hasler, Mar 29 2015
    
  • PARI
    a002432(n) = denominator(polcoeff((1-x*cotan(x))/2,n*2))
    default(seriesprecision, 33); for(i=0,16,print1(a002432(i),",")) \\ Chris Boyd, Dec 21 2015

Formula

Sum_{n>=1} 2/(n^2 + 1) = Pi*coth(Pi)-1. 2*Sum_{k>=1} (-1)^(k + 1)/n^(2*k) = 2/(n^2+1). - Shmuel Spiegel (shmualm(AT)hotmail.com), Aug 13 2001
zeta(2n)/(2i * ( log(1-i)-log(1+i) ))^(2n) = zeta(2n)/(-i*log(-1))^(2n). - Eric Desbiaux, Dec 12 2008
zeta(2n) = Sum_{k >= 1} k^(-2n) = (-1)^(n-1)*B_{2n}*2^(2n-1)*Pi^(2n)/(2n)!.
a(n) = -A046988(n)*A010050(n)*A002445(n)/(A009117(n)*A000367(n))
a(n) = sqrt(denominator(Sum_{i>=1} A000005(i)/i^2n)). - Enrique Pérez Herrero, Jan 19 2012
Sum_{k >= 1} zeta(2k)*x^(2k) = (1-Pi*x*cot(Pi*x))/2. - Chris Boyd, Dec 21 2015
a(n) = denominator([x^(2*n)] -x*cot(x)/2). - Peter Luschny, Jun 07 2020

Extensions

Formula and link from Henry Bottomley, Mar 10 2000
Formula corrected by Bjoern Boettcher, May 15 2003
Corrected and edited by M. F. Hasler, Mar 29 2015
a(0) = 2 prepended by Peter Luschny, Jun 07 2020