A002432 Denominators of zeta(2*n)/Pi^(2*n).
2, 6, 90, 945, 9450, 93555, 638512875, 18243225, 325641566250, 38979295480125, 1531329465290625, 13447856940643125, 201919571963756521875, 11094481976030578125, 564653660170076273671875, 5660878804669082674070015625, 62490220571022341207266406250
Offset: 0
Examples
(zeta(2n)/Pi^(2n), n = 0, 1, 2, 3, ...) = (-1/2, 1/6, 1/90, 1/945, 1/9450, 1/93555, 691/638512875, 2/18243225, 3617/325641566250, ...), i.e.: zeta(0) = -1/2, zeta(2) = Pi^2/6, zeta(4) = Pi^4/90, zeta(6) = Pi^6/945, zeta(8) = Pi^8/9450, zeta(10) = Pi^10/93555, zeta(12) = Pi^12*691/638512875, ... In Maple, series(Psi(x),x,20) gives -1*x^(-1) + (-gamma) + 1/6*Pi^2*x + (-Zeta(3))*x^2 + 1/90*Pi^4*x^3 + (-Zeta(5))*x^4 + 1/945*Pi^6*x^5 + (-Zeta(7))*x^6 + 1/9450*Pi^8*x^7 + (-Zeta(9))*x^8 + 1/93555*Pi^10*x^9 + ... a(5) = 93555 = 10!/(2^9 * B(10)) = 3628800/(512*5/66). - _Frank Ellermann_, Apr 03 2020
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and J.P. Martin-Flatin, Table of n, a(n) for n = 0..250 (first 100 terms were computed by T. D. Noe).
- G. Campbell, Some series like ζ(3), ζ(5), ζ(7). Number Theory group on LinkedIn.com, March 2015.
- N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
- N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
- Masato Kobayashi and Shunji Sasaki, Values of zeta-one functions at positive even integers, arXiv:2202.11835 [math.NT], 2022. See p. 4.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
- I. Song, A recursive formula for even order harmonic series, J. Computational and Appl. Math., 21 (1988), 251-256.
- I. Song, A recursive formula for even order harmonic series, J. Computational and Appl. Math., 21 (1988), 251-256. [Annotated scanned copy]
- Index entries for zeta function.
Programs
-
Maple
seq(denom(Zeta(2*n)/Pi^(2*n)),n=0..24); # Martin Renner, Sep 07 2016 A002432List := proc(len) series(-x*cot(x)/2, x, 2*len+1): seq(denom(coeff(%, x, n)), n=0..2*len-1, 2) end: A002432List(17); # Peter Luschny, Jun 07 2020
-
Mathematica
Table[Denominator[Zeta[2 n]/Pi^(2 n)], {n, 0, 30}] (* Artur Jasinski, Mar 11 2010 *) Denominator[Zeta[2*Range[0, 20]]] (* Harvey P. Dale, Sep 05 2013 *)
-
PARI
a(n)=numerator(bestappr(Pi^(2*n)/zeta(2*n))) \\ Requires sufficient realprecision. The standard value of 38 digits yields erroneous values for n>9. \p99 is more than enough to get the 3 lines of displayed data. - M. F. Hasler, Mar 29 2015
-
PARI
a002432(n) = denominator(polcoeff((1-x*cotan(x))/2,n*2)) default(seriesprecision, 33); for(i=0,16,print1(a002432(i),",")) \\ Chris Boyd, Dec 21 2015
Formula
Sum_{n>=1} 2/(n^2 + 1) = Pi*coth(Pi)-1. 2*Sum_{k>=1} (-1)^(k + 1)/n^(2*k) = 2/(n^2+1). - Shmuel Spiegel (shmualm(AT)hotmail.com), Aug 13 2001
zeta(2n)/(2i * ( log(1-i)-log(1+i) ))^(2n) = zeta(2n)/(-i*log(-1))^(2n). - Eric Desbiaux, Dec 12 2008
zeta(2n) = Sum_{k >= 1} k^(-2n) = (-1)^(n-1)*B_{2n}*2^(2n-1)*Pi^(2n)/(2n)!.
a(n) = sqrt(denominator(Sum_{i>=1} A000005(i)/i^2n)). - Enrique Pérez Herrero, Jan 19 2012
Sum_{k >= 1} zeta(2k)*x^(2k) = (1-Pi*x*cot(Pi*x))/2. - Chris Boyd, Dec 21 2015
a(n) = denominator([x^(2*n)] -x*cot(x)/2). - Peter Luschny, Jun 07 2020
Extensions
Formula and link from Henry Bottomley, Mar 10 2000
Formula corrected by Bjoern Boettcher, May 15 2003
Corrected and edited by M. F. Hasler, Mar 29 2015
a(0) = 2 prepended by Peter Luschny, Jun 07 2020
Comments