cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A013670 Decimal expansion of zeta(12).

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 6, 0, 8, 6, 5, 5, 3, 3, 0, 8, 0, 4, 8, 2, 9, 8, 6, 3, 7, 9, 9, 8, 0, 4, 7, 7, 3, 9, 6, 7, 0, 9, 6, 0, 4, 1, 6, 0, 8, 8, 4, 5, 8, 0, 0, 3, 4, 0, 4, 5, 3, 3, 0, 4, 0, 9, 5, 2, 1, 3, 3, 2, 5, 2, 0, 1, 9, 6, 8, 1, 9, 4, 0, 9, 1, 3, 0, 4, 9, 0, 4, 2, 8, 0, 8, 5, 5, 1, 9, 0, 0, 6, 9
Offset: 1

Views

Author

Keywords

Examples

			1.0002460865533080482986379980477396709604160884580034045330409521332520...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

Formula

zeta(12) = 2/3*2^12/(2^12 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^13 ), where p(n) = 7*n^12 + 182*n^10 + 1001*n^8 + 1716*n^6 + 1001*n^4 + 182*n^2 + 7 is a row polynomial of A091043. - Peter Bala, Dec 05 2013
zeta(12) = Sum_{n >= 1} (A010052(n)/n^6) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^6 ). - Mikael Aaltonen, Feb 20 2015
zeta(12) = 691/638512875*Pi^12 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(12) = Product_{k>=1} 1/(1 - 1/prime(k)^12). - Vaclav Kotesovec, May 02 2020

A073747 Decimal expansion of coth(1).

Original entry on oeis.org

1, 3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

coth(x) = (e^x + e^(-x))/(e^x - e^(-x)).
Because the continued fraction for coth(1) is all positive odd numbers in sequence, the second Mathematica program below also generates the sequence. - Harvey P. Dale, Oct 15 2011
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.31303528549933130363616124693...
		

References

  • Samuel M. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A005408 (continued fraction: odd numbers), A073821 (continued fraction exp. is even numbers), A073744 (tanh(1)=1/A073747), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)), A349004.

Programs

  • Mathematica
    RealDigits[Coth[1],10,120][[1]] (* or *) RealDigits[ FromContinuedFraction[ Range[1,1001,2]],10,120][[1]] (* Harvey P. Dale, Oct 15 2011 *) (* see Comments, above, for the second program *)
  • PARI
    1/tanh(1)

Formula

Equals 1 + Sum_{n>=1} (2^(2*n)*B(2*n))/(2*n)! = 1 + Sum_{n>=1} (-1)^(n+1)*2*(A046988(n+1) / A002432(n+1)). - Terry D. Grant, May 30 2017
Equals 1 + BesselI(3/2, 1)/BesselI(1/2, 1). - Terry D. Grant, Jun 18 2018
Equals 1 + Sum_{k>=1} csch(2^k) (Ohtsuka, 2015; Stenger, 2017). - Amiram Eldar, Oct 04 2021

A046988 Numerators of zeta(2*n)/Pi^(2*n).

Original entry on oeis.org

-1, 1, 1, 1, 1, 1, 691, 2, 3617, 43867, 174611, 155366, 236364091, 1315862, 6785560294, 6892673020804, 7709321041217, 151628697551, 26315271553053477373, 308420411983322, 261082718496449122051, 3040195287836141605382, 5060594468963822588186
Offset: 0

Views

Author

Keywords

Comments

Equivalently, numerator of (-1)^(n+1)*2^(2*n-1)*Bernoulli(2*n)/(2*n)!. - Lekraj Beedassy, Jun 26 2003
An old name erroneously included "Numerators of Taylor series expansion of log(x/sin(x))"; that is now submitted as a distinct sequence A283301. - Vladimir Reshetnikov, Mar 04 2017

Examples

			Numerator(zeta(0)/Pi^0) = -1. - _Artur Jasinski_, Mar 11 2010
		

References

  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 222, series for log(H(x)/x).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.

Crossrefs

Cf. A002432 (denominators), A283301, A266214.

Programs

  • Maple
    seq(numer(Zeta(2*n)/Pi^(2*n)),n=1..24); # Martin Renner, Sep 07 2016
  • Mathematica
    Table[Numerator[Zeta[2 n]/Pi^(2 n)], {n, 0, 30}] (* Artur Jasinski, Mar 11 2010 *)

A013672 Decimal expansion of zeta(14).

Original entry on oeis.org

1, 0, 0, 0, 0, 6, 1, 2, 4, 8, 1, 3, 5, 0, 5, 8, 7, 0, 4, 8, 2, 9, 2, 5, 8, 5, 4, 5, 1, 0, 5, 1, 3, 5, 3, 3, 3, 7, 4, 7, 4, 8, 1, 6, 9, 6, 1, 6, 9, 1, 5, 4, 5, 4, 9, 4, 8, 2, 7, 5, 5, 2, 0, 2, 2, 5, 2, 8, 6, 2, 9, 4, 1, 0, 2, 3, 1, 7, 7, 4, 2, 0, 8, 7, 6, 6, 5, 9, 7, 8, 2, 9, 7, 1, 9, 9, 8, 4, 6
Offset: 1

Views

Author

Keywords

Examples

			1.0000612481350587048292585451051353337474816961691545494827552022528629...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Programs

Formula

zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - Mikael Aaltonen, Feb 20 2015
zeta(14) = 2/18243225*Pi^14 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - Vaclav Kotesovec, May 02 2020

A013676 Decimal expansion of zeta(18).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, 4, 4, 2, 9, 9, 8, 7, 6, 3, 0, 0, 3, 9, 5, 4, 2, 6, 5, 0, 0, 4, 5, 6, 3, 8, 0, 0, 1, 9, 6, 8, 6, 6, 8, 9, 8, 9, 6, 4
Offset: 1

Views

Author

Keywords

Examples

			1.0000038172932649998398564616446219397...
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Programs

Formula

zeta(18) = Sum_{n >= 1} (A010052(n)/n^9) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^9 ). - Mikael Aaltonen, Mar 06 2015
zeta(18) = 43867*Pi^18/38979295480125 = A046988(9)*Pi^18/A002432(9). - Alonso del Arte, Feb 12 2016
zeta(18) = Product_{k>=1} 1/(1 - 1/prime(k)^18). - Vaclav Kotesovec, May 02 2020

A117972 Numerator of zeta'(-2n), n >= 0.

Original entry on oeis.org

1, -1, 3, -45, 315, -14175, 467775, -42567525, 638512875, -97692469875, 9280784638125, -2143861251406875, 147926426347074375, -48076088562799171875, 9086380738369043484375, -3952575621190533915703125
Offset: 0

Views

Author

Eric W. Weisstein, Apr 06 2006

Keywords

Comments

In A160464 the coefficients of the ES1 matrix are defined. This matrix led to the discovery that the successive differences of the ES1[1-2*m,n] coefficients for m = 1, 2, 3, ..., are equal to the values of zeta'(-2n), see also A094665 and A160468. - Johannes W. Meijer, May 24 2009
A048896(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2,
a(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
From Andrey Zabolotskiy, Sep 23 2021: (Start)
zeta'(-2n), which is mentioned in the Name, is irrational. For n > 0, a(n) is the numerator of the rational fraction g(n) = Pi^(2n)*zeta'(-2n)/zeta(2n+1). The denominator is 4*A048896(n-1). g(n) = f(n) for n > 0, where f(n) is given in the Formula section. Also, f(n) = Bernoulli(2n)/z(n)/4 (see Formula section) for all n.
For n = 0, zeta'(0) = -log(2Pi)/2, g(0) can be set to 0 because of the infinite denominator. However, a(0) is set to 1 because it is the numerator of f(0).
It seems that -4*f(n)*alpha_n = A000182(n), where alpha_n = A191657(n, p(n)) / A191658(n, p(n)) [where p(n) = A000041(n)] is the n-th "elementary coefficient" from the paper by Izaurieta et al. (End)

Examples

			-1/4, 3/4, -45/8, 315/4, -14175/8, 467775/8, -42567525/16, ...
-zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8), (-14175*zeta(11))/(8*Pi^10), ...
		

Crossrefs

From Johannes W. Meijer, May 24 2009: (Start)
Absolute values equal row sums of A160468. (End)

Programs

  • Maple
    # Without rational arithmetic
    a := n -> (-1)^n*(2*n)!*2^(add(i,i=convert(n,base,2))-2*n);
    # Peter Luschny, May 02 2009
  • Mathematica
    Table[Numerator[(2 n)!/2^(2 n + 1) (-1)^n], {n, 0, 30}]
  • Maxima
    L:taylor(1/x*sin(sqrt(x))^2,x,0,15); makelist(denom(coeff(L,x,n))*(-1)^(n+1),n,0,15); /* Vladimir Kruchinin, May 30 2011 */

Formula

a(n) = numerator(f(n)) where f(n) = (2*n)!/2^(2*n + 1)(-1)^n, from the Mathematica code.
From Terry D. Grant, May 28 2017: (Start)
|a(n)| = A049606(2n).
a(n) = -numerator(Bernoulli(2n)/z(n)) where Bernoulli(2n) = A000367(n) / A002445(n) and z(n) = A046988(n) / A002432(n) for n > 0. (End) [Corrected by Andrey Zabolotskiy, Sep 23 2021]

Extensions

First term added, offset changed and edited by Johannes W. Meijer, May 15 2009

A052277 a(n) = (4n+2)!/2^(2n+1).

Original entry on oeis.org

1, 90, 113400, 681080400, 12504636144000, 548828480360160000, 49229914688306352000000, 8094874872198213459360000000, 2252447502438386084347676160000000, 997586474354936812896742294502400000000, 669959124447288464805194190141921792000000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2000

Keywords

Crossrefs

Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)).
Cf. A068447, A067912, A013662 (zeta(4)).

Programs

  • Mathematica
    Table[(4n+2)!/2^(2n+1), {n, 0, 10}] (* Amiram Eldar, Feb 25 2022 *)
  • PARI
    a(n) = (4*n+2)!/2^(2*n+1); \\ Michel Marcus, Feb 20 2022

Formula

sin(x)*sinh(x) = Sum_{n>=0} (-1)^n*x^(4n+2)/a(n). - Benoit Cloitre, Feb 02 2002
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (cosh(sqrt(2)) - cos(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = sin(1)*sinh(1). (End)

A276592 Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

Original entry on oeis.org

1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
Offset: 1

Views

Author

Martin Renner, Sep 07 2016

Keywords

Comments

Apart from signs, same as A089171 and A279370. - Peter Bala, Feb 07 2019

Crossrefs

Programs

  • Maple
    seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
  • Mathematica
    a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]]  (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)

Formula

a(n)/A276593(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
a(n)/A276593(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

Original entry on oeis.org

8, 96, 960, 161280, 2903040, 638668800, 49816166400, 83691159552000, 2845499424768000, 1946321606541312000, 408727537373675520000, 48662619743783485440000, 124089680346647887872000000, 174221911206693634572288000000, 70734095949917615636348928000000
Offset: 1

Views

Author

Martin Renner, Sep 07 2016

Keywords

Comments

A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - Seiichi Manyama, Sep 03 2018

Examples

			From _Seiichi Manyama_, Sep 03 2018: (Start)
n |    Pi^(2*n)   |   a(n)/A276592(n)
--+---------------+------------------------------------
1 |        9.8... |           8
2 |       97.4... |          96
3 |      961.3... |         960
4 |     9488.5... |      161280/17     =     9487.0...
5 |    93648.0... |     2903040/31     =    93646.4...
6 |   924269.1... |   638668800/691    =   924267.4...
7 |  9122171.1... | 49816166400/5461   =  9122169.2... (End)
		

Crossrefs

Programs

  • Maple
    seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
  • Mathematica
    a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)

Formula

A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018
Showing 1-10 of 24 results. Next