cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A266911 GCD of A002443(n) and A002444(n), numerator and denominator in Feinler's formula for the Bernoulli number B_{2n}.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 60, 3, 10, 42, 60, 30, 252, 4, 8, 231, 210, 2, 5460, 42, 660, 1260, 840, 210, 7956, 396, 440, 228, 120, 24, 720720, 2145, 510, 14490, 180, 330, 17117100, 36036, 360, 378, 26180, 3740, 3483480, 5460, 83720, 5442360, 1755600, 2310, 2187900, 2652, 17160, 13860, 3960, 440
Offset: 0

Views

Author

M. F. Hasler, Jan 05 2016

Keywords

Comments

Note that A002443/A002444 = |B_{2n}| = |A000367/A002445|.

Crossrefs

Formula

a(n) = gcd(A002443(n),A002444(n)).

Extensions

More terms from N. J. A. Sloane, Jan 08 2016

A115627 Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

The factorization of n! is n! = 2^T(n,1)*3^T(n,2)*...*p_(pi(n))^T(n,pi(n)) where p_k = k-th prime, pi(n) = A000720(n).
Nonzero terms of A085604; T(n,k) = A085604(n,k), k = 1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
For n=2, 3, 4 and 5, all terms of the n-th row are odd. Are there other such rows? - Michel Marcus, Nov 11 2018
From Gus Wiseman, May 15 2019: (Start)
Differences between successive rows are A067255, so row n is the sum of the first n row-vectors of A067255 (padded with zeros on the right so that all n row-vectors have length A000720(n)). For example, the first 10 rows of A067255 are
{}
1
0 1
2 0
0 0 1
1 1 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0
with column sums (8,4,2,1), which is row 10.
(End)
For all prime p > 7, 3*p > 2*nextprime(p), so for any n > 21 there will always be a prime p dividing n! with exponent 2 and there are no further rows with all entries odd. - Charlie Neder, Jun 03 2019

Examples

			From _Gus Wiseman_, May 09 2019: (Start)
Triangle begins:
   1
   1  1
   3  1
   3  1  1
   4  2  1
   4  2  1  1
   7  2  1  1
   7  4  1  1
   8  4  2  1
   8  4  2  1  1
  10  5  2  1  1
  10  5  2  1  1  1
  11  5  2  2  1  1
  11  6  3  2  1  1
  15  6  3  2  1  1
  15  6  3  2  1  1  1
  16  8  3  2  1  1  1
  16  8  3  2  1  1  1  1
  18  8  4  2  1  1  1  1
(End)
m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - _David A. Corneth_, Jun 22 2014
		

Crossrefs

Row lengths are A000720.
Row-sums are A022559.
Row-products are A135291.
Row maxima are A011371.

Programs

  • Haskell
    a115627 n k = a115627_tabf !! (n-2) !! (k-1)
    a115627_row = map a100995 . a141809_row . a000142
    a115627_tabf = map a115627_row [2..]
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A115627 := proc(n,k) local d,p; p := ithprime(k) ; n-add(d,d=convert(n,base,p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
  • Mathematica
    Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *)
    T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
  • PARI
    a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014

Formula

T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014

A002444 Denominator in Feinler's formula for unsigned Bernoulli number |B_{2n}|.

Original entry on oeis.org

1, 6, 30, 84, 90, 132, 5460, 360, 1530, 7980, 13860, 8280, 81900, 1512, 3480, 114576, 117810, 1260, 3838380, 32760, 568260, 1191960, 869400, 236880, 9746100, 525096, 629640, 351120, 198360, 42480, 1362881520, 4324320, 1093950, 33008220, 434700, 843480, 46233287100, 102702600, 1081080
Offset: 0

Views

Author

Keywords

Comments

A002443/A002444 = |B_{2n}| (see also A000367/A002445).

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 208.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory);
    g:=proc(m) local i,n; n:=2*m;
    mul(ithprime(i)^floor(n/(ithprime(i)-1)),i=1..pi(n+1));
    %/n!;
    end;
    [seq(g(m),m=0..40)]; # N. J. A. Sloane, Jan 08 2016
  • Mathematica
    a[n_] := Product[Prime[i]^Floor[2n/(Prime[i]-1)], {i, 1, PrimePi[2n+1]}]/(2n)!;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 08 2023 *)

Formula

Let p_i denote the i-th prime, and let V(n,i) = floor(n/(prime(i)-1)) = A266742(n,i).
Then a(n) = (Prod_i (p_i)^V(n,i))/n!.
(See Davis, Vol. 2, p. 206, first displayed equation, where a(n) appears as d_{2k}.)

Extensions

Name amended upon suggestion by T. D. Noe, by M. F. Hasler, Jan 05 2016
Edited with new definition, more terms, and scan of source by N. J. A. Sloane, Jan 08 2016

A266742 Irregular triangle read by rows: T(n,k) = floor(n/(prime(k)-1)), n>=1, 1 <= k <= pi(n+1), where pi is A000720.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 1, 7, 3, 1, 1, 8, 4, 2, 1, 9, 4, 2, 1, 10, 5, 2, 1, 1, 11, 5, 2, 1, 1, 12, 6, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 14, 7, 3, 2, 1, 1, 15, 7, 3, 2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 17, 8, 4, 2, 1, 1, 1, 18, 9, 4, 3, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2016

Keywords

Examples

			Triangle begins:
[1]
[2, 1]
[3, 1]
[4, 2, 1]
[5, 2, 1]
[6, 3, 1, 1]
[7, 3, 1, 1]
[8, 4, 2, 1]
[9, 4, 2, 1]
[10, 5, 2, 1, 1]
[11, 5, 2, 1, 1]
[12, 6, 3, 2, 1, 1]
[13, 6, 3, 2, 1, 1]
[14, 7, 3, 2, 1, 1]
...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    f:=n->[seq(floor(n/(ithprime(i)-1)),i=1..pi(n+1))];
    for n from 1 to 20 do lprint(f(n)); od:

A266743 Irregular triangle T(n,k) read by rows: see Comments for definition.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 2, 1, 6, 15, 10, 1, 2, 6, 5, 1, 12, 42, 42, 14, 1, 3, 12, 14, 7, 1, 10, 45, 60, 42, 10, 1, 2, 10, 15, 14, 5, 1, 12, 66, 110, 132, 66, 22, 1, 2, 12, 22, 33, 22, 11, 1, 420, 2730, 5460, 10010, 8580, 6006, 910, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2016

Keywords

Comments

Let p_i denote the i-th prime, let pi(n) = A000720(n), and let N! = Product_{i = 1..pi(N)} (p_i)^U(N,i) be the prime factorization of N!, where U(N,i) = A115627(N,i).
Let V(n,i) = floor(n/(prime(i)-1)) = A266742(n,i).
The present triangle is defined by T(n,k) =
Product_{i} (p_i)^V(n,i) / ( Product_{j} (p_j)^V(k,j) * Product_{r} (p_r)^U(n-k+1,r) ).

Examples

			Triangle begins:
    1;
    1,    1;
    2,    3,    1;
    1,    2,    1;
    6,   15,   10,     1;
    2,    6,    5,     1;
   12,   42,   42,    14,    1;
    3,   12,   14,     7,    1;
   10,   45,   60,    42,   10,    1;
    2,   10,   15,    14,    5,    1;
   12,   66,  110,   132,   66,   22,   1;
    2,   12,   22,    33,   22,   11,   1;
  420, 2730, 5460, 10010, 8580, 6006, 910, 1;
  ...
		

Crossrefs

Showing 1-5 of 5 results.