A002446 a(n) = 2^(2*n+1) - 2.
0, 6, 30, 126, 510, 2046, 8190, 32766, 131070, 524286, 2097150, 8388606, 33554430, 134217726, 536870910, 2147483646, 8589934590, 34359738366, 137438953470, 549755813886, 2199023255550, 8796093022206, 35184372088830
Offset: 0
References
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
GAP
List([0..30], n-> 2*(4^n - 1)) # G. C. Greubel, Jul 04 2019
-
Magma
[2^(2*n+1) - 2: n in [0..30]]; // Vincenzo Librandi, Jun 01 2011
-
Maple
A002446:=6*z/((4*z-1)*(z-1)); # [Generating function. Simon Plouffe in his 1992 dissertation.]
-
Mathematica
f[n_] := Det[{{1, 1}, {1, 4}}^(n - 1) {{1, 2}, {1, 2}}]; Array[f, 30] (* Robert G. Wilson v, Jul 13 2011 *) 2^(2*Range[0,30]+1)-2 (* or *) LinearRecurrence[{5,-4},{0,6},30] (* Harvey P. Dale, Sep 01 2016 *)
-
PARI
a(n) = 2*(4^n - 1); \\ G. C. Greubel, Jul 04 2019
-
Sage
[2*(4^n -1) for n in (0..30)] # G. C. Greubel, Jul 04 2019
Formula
G.f.: 6*x/((1-x)*(1-4*x)). - Simon Plouffe, see MAPLE line
E.g.f.: (cos(i*x)-1)^2. - Vladimir Kruchinin, Oct 28 2012
Extensions
More terms from Vincenzo Librandi, Jun 01 2011