A002496 Primes of the form k^2 + 1.
2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177
Offset: 1
References
- Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 211 pp. 34 and 169, Ellipses, Paris, 2004.
- Leonhard Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 22.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
- Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
- C. Stanley Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Tewodros Amdeberhan, Luis A. Medina and Victor H. Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Numb. Theory, Vol. 128, No. 6 (2008), pp. 1807-1846, eq. (1.10).
- William D. Banks, John B. Friedlander, Carl Pomerance and Igor E. Shparlinski, Multiplicative structure of values of the Euler function, in High Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams (A. Van der Poorten, ed.), Fields Inst. Comm. 41 (2004), pp. 29-47.
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Mathematics of Computation, Vol. 16, No. 79 (1962), pp. 363-367.
- Joel E. Cohen, Conjectures about Primes and Cyclic Numbers, arXiv:2508.08335 [math.NT], 2025. See p. 11.
- Frank Ellermann, Primes of the form (m^2)+1 up to 10^6.
- Dan Ismailescu and Yunkyu James Lee, Polynomially growing integer sequences all whose terms are composite, arXiv:2501.04851 [math.NT], 2025. See p. 9.
- Leon Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly, Vol. 56, No. 1 (1949), pp. 17-19.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019.
- Apoloniusz Tyszka and Sławomir Kurpaska, Open problems that concern computable sets X, subset of N, and cannot be formally stated as they refer to current knowledge about X, (2020).
- Eric Weisstein's World of Mathematics, Landau's Problems.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
- Wikipedia, Bateman-Horn Conjecture.
- Marek Wolf, Search for primes of the form m^2+1, arXiv:0803.1456 [math.NT], 2008-2010.
Crossrefs
Programs
-
Haskell
a002496 n = a002496_list !! (n-1) a002496_list = filter ((== 1) . a010051') a002522_list -- Reinhard Zumkeller, May 06 2013
-
Magma
[p: p in PrimesUpTo(100000)| IsSquare(p-1)]; // Vincenzo Librandi, Apr 09 2011
-
Maple
select(isprime, [2, seq(4*i^2+1, i= 1..1000)]); # Robert Israel, Oct 14 2014
-
Mathematica
Select[Range[100]^2+1, PrimeQ] Join[{2},Select[Range[2,300,2]^2+1,PrimeQ]] (* Harvey P. Dale, Dec 18 2018 *)
-
PARI
isA002496(n) = isprime(n) && issquare(n-1) \\ Michael B. Porter, Mar 21 2010
-
PARI
is_A002496(n)=issquare(n-1)&&isprime(n) \\ For "random" numbers in the range 10^10 and beyond, at least 5 times faster than the above. - M. F. Hasler, Oct 14 2014
-
Python
# Python 3.2 or higher required from itertools import accumulate from sympy import isprime A002496_list = [n+1 for n in accumulate(range(10**5),lambda x,y:x+2*y-1) if isprime(n+1)] # Chai Wah Wu, Sep 23 2014
-
Python
# Python 2.4 or higher required from sympy import isprime A002496_list = list(filter(isprime, (n*n+1 for n in range(10**5)))) # David Radcliffe, Jun 26 2016
Formula
There are O(sqrt(n)/log(n)) terms of this sequence up to n. But this is just an upper bound. See the Bateman-Horn or Wolf papers, for example, for the conjectured for what is believed to be the correct density.
a(n) = 1 + A005574(n)^2. - R. J. Mathar, Jul 31 2015
Sum_{n>=1} 1/a(n) = A172168. - Amiram Eldar, Nov 14 2020
a(n+1) = 4*A001912(n)^2 + 1. - Hal M. Switkay, Apr 03 2022
Extensions
Formula, reference, and comment from Charles R Greathouse IV, Aug 24 2009
Edited by M. F. Hasler, Oct 14 2014
Comments