A002503 Numbers k such that binomial(2*k,k) is divisible by (k+1)^2.
5, 14, 27, 41, 44, 65, 76, 90, 109, 125, 139, 152, 155, 169, 186, 189, 203, 208, 209, 219, 227, 230, 237, 265, 275, 298, 307, 311, 314, 321, 324, 329, 344, 377, 413, 419, 428, 434, 439, 441, 449, 458, 459, 467, 475
Offset: 1
References
- Hoon Balakram, On the values of n which make (2n)!/(n+1)!(n+1)! an integer, J. Indian Math. Soc., Vol. 18 (1929), pp. 97-100.
- Thomas Koshy, Catalan numbers with applications, Oxford University Press, 2008, pp. 69-70.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- P. Erdős, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp., Vol. 29, No. 129 (1975), pp. 83-92.
- Carl Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, Vol. 112, No. 7 (2015), pp. 636-644; alternative link.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a002503 n = a002503_list !! (n-1) a002503_list = map (+ 1) $ elemIndices 0 a065350_list -- Reinhard Zumkeller, Sep 16 2014
-
Mathematica
Select[Range[500],Divisible[Binomial[2#,#],(#+1)^2]&] (* Harvey P. Dale, May 21 2012 *)
-
PARI
isok(n) = binomial(2*n, n) % (n+1)^2 == 0; \\ Michel Marcus, Jan 11 2016
Formula
A065350(a(n)) = 0. - Reinhard Zumkeller, Sep 16 2014
Extensions
Balakram reference corrected by T. D. Noe, Jan 16 2007
Comments