cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065351 Duplicate of A002503.

Original entry on oeis.org

5, 14, 27, 41, 44, 65, 76, 90, 109, 125, 139, 152, 155, 169, 186, 189, 203
Offset: 0

Views

Author

Keywords

A176358 Partial sums of A002503.

Original entry on oeis.org

5, 19, 46, 87, 131, 196, 272, 362, 471, 596, 735, 887, 1042, 1211, 1397, 1586, 1789, 1997, 2206, 2425, 2652, 2882, 3119, 3384, 3659, 3957, 4264, 4575, 4889, 5210, 5534, 5863, 6207, 6584, 6997, 7416, 7844, 8278, 8717, 9158, 9607, 10065, 10524, 10991
Offset: 1

Views

Author

Jonathan Vos Post, Apr 15 2010

Keywords

Examples

			a(4) = 5 + 14 + 27 + 41 = 87.
		

Crossrefs

Cf. A002503.

Programs

  • Mathematica
    Accumulate[Select[Range[800],Divisible[Binomial[2#,#],(#+1)^2]&]]  (* Harvey P. Dale, Apr 18 2011 *)

Formula

a(n) = Sum_{i=1..n} A002503(i).

Extensions

Corrected by Harvey P. Dale, Apr 18 2011

A067348 Even numbers n such that binomial(n, [n/2]) is divisible by n.

Original entry on oeis.org

2, 12, 30, 56, 84, 90, 132, 154, 182, 220, 252, 280, 306, 312, 340, 374, 380, 408, 418, 420, 440, 456, 462, 476, 532, 552, 598, 616, 624, 630, 644, 650, 660, 690, 756, 828, 840, 858, 870, 880, 884, 900, 918, 920, 936, 952, 966, 986, 992, 1020, 1054, 1102
Offset: 1

Views

Author

Dean Hickerson, Jan 16 2002

Keywords

Comments

This sequence has a surprisingly large overlap with A080385(n); a few values, 2, 420, 920 are exceptional. This means that usually A080383(A067348(n))=7. - Labos Elemer, Mar 17 2003
Conjecture: sequence contains most of 2*A000384(k). Exceptions are k = 8, 18, 20, 23, 35, ... - Ralf Stephan, Mar 15 2004

Crossrefs

Subsequence of A042996.

Programs

  • Mathematica
    Select[Range[2, 1200, 2], Mod[Binomial[ #, #/2], # ]==0&]
  • PARI
    val(n, p) = my(r=0); while(n, r+=n\=p);r
    is(n) = {if(valuation(n, 2) == 0, return(0)); my(f = factor(n)); for(i=1, #f~, if(val(n, f[i, 1]) - 2 * val(n/2, f[i, 1]) - f[i, 2] < 0, return(0))); return(1)} \\ David A. Corneth, Jul 29 2017

Formula

a(n) = 2*A002503(n-2) + 2.
Appears to be 2*A058008(n). - Benoit Cloitre, Mar 21 2003

Extensions

Name clarified by Peter Luschny, Aug 04 2017

A058008 Numbers k such that (2*k - 1)!/(k!)^2 is an integer.

Original entry on oeis.org

1, 6, 15, 28, 42, 45, 66, 77, 91, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 468, 476, 483, 493, 496, 510, 527, 551, 558, 561, 570
Offset: 1

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Comments

Original name was: Numbers n such that gcd(2*n,C(2*n,n))=2*n.
For n a prime power (see A000961) we have gcd(2*n,C(2*n,n))=2. - Arkadiusz Wesolowski, Jul 01 2012
Also, positions where A075055 differs from A000984. - Ralf Stephan, Dec 11 2004
From Peter Bala, Aug 21 2025: (Start)
Also numbers k such that (2*k - 2)!/(k!)^2 is an integer (since (2*k - 1)!/(k!)^2 + (2*k - 2)!/(k!)^2 = 2*Catalan(k-1) for k >= 1). Equivalently, numbers k such that Catalan(k-1) is divisible by k.
Since for prime p, Catalan(p-1) == -1 (mod p), the entries in this list are all nonprime. (End)

Crossrefs

Programs

  • Maple
    q:= k-> is(denom((2*k-1)!/(k!)^2)=1):
    select(q, [$1..600])[];  # Alois P. Heinz, Feb 06 2025
  • Mathematica
    Select[Range[500], IntegerQ[(2 # - 1)!/#!^2] &] (* Arkadiusz Wesolowski, Jul 01 2012 *)

Formula

Appears to be A067348(n)/2. - Benoit Cloitre, Mar 21 2003
Terms >1 are given by A002503+1. - Benoit Cloitre, Dec 09 2017

Extensions

Name changed by Arkadiusz Wesolowski, Jul 01 2012

A065350 a(n) = binomial(2*n, n) mod (n+1)^2.

Original entry on oeis.org

2, 6, 4, 20, 0, 42, 40, 72, 20, 110, 120, 156, 56, 0, 208, 272, 108, 342, 200, 378, 176, 506, 432, 600, 260, 459, 0, 812, 840, 930, 928, 396, 476, 490, 360, 1332, 608, 1131, 1200, 1640, 0, 1806, 880, 0, 920, 2162, 864, 2352, 1100, 1224, 208, 2756, 1296, 2145
Offset: 1

Views

Author

Labos Elemer, Oct 30 2001

Keywords

Comments

a(A002503(n)) = 0. - Reinhard Zumkeller, Sep 16 2014

Crossrefs

Programs

  • Haskell
    a065350 n = a065350_list !! (n-1)
    a065350_list = zipWith mod (tail a000984_list) (drop 2 a000290_list)
    -- Reinhard Zumkeller, Sep 16 2014
  • Mathematica
    Table[Mod[Binomial[2 n, n], (n + 1)^2], {n, 100}] (* Bruno Berselli, Jan 06 2014 *)
  • PARI
    a(n) = { binomial(2*n, n) % (n + 1)^2 } \\ Harry J. Smith, Oct 17 2009
    

A065352 Smallest m such that C(2m,m) is divisible by (m+n)!/m!.

Original entry on oeis.org

1, 3, 8, 19, 42, 153, 216, 375, 950, 3565, 4068, 12273, 12274, 31729, 122352, 131023, 458222, 522221, 1046508, 3145451, 6291178, 12320745, 16769000, 56623079, 113246182, 267780069, 469745636, 671088611, 1879015394, 2146959329, 6442418144, 16642932703, 16911433694, 60129279965, 206091288540
Offset: 1

Views

Author

Labos Elemer, Oct 31 2001

Keywords

Comments

For n=1 see Catalan numbers A000108.
Heuristically one can observe that a(n) + n + 1 has a 'high' valuation of 2. For n = 17..25 we have 2^8|(a(n) + n + 1). - David A. Corneth, Mar 28 2021
Since (m+n)!/m! = C(m+n,m) * n!, Kummer's theorem implies that A000120(a(n)) >= A007814(n!) = A011371(n) = n - A000120(n), and a(n) >= 2^(n-1). - Max Alekseyev, Sep 24 2024

Examples

			n=4: a(4)=19 means that C(38,19)=35345263800 is divisible by (19+1)(19+2)(19+3)(19+4)=23!/19!=20*21*22*23=215520; the quotient is 166315. Smaller (<19) central binomial coefficients are not divisible by such a product of 4 successive terms; the corresponding quotients for n = 1, 2, 3, 4, 5,... are 1, 1, 13, 166315, 9120910752273999,...
		

Crossrefs

Programs

  • Mathematica
    Do[m = 1; While[Not[Divisible[Binomial[2*m,m],(m+n)!/m!]], m++]; Print[m], {n, 1, 16}] (* Vaclav Kotesovec, Sep 05 2019 *)
  • PARI
    \\ See Corneth link

Formula

C(2m, m)=A*((m+1)(m+2)...(m+n-1)(m+n)); a(n) is the smallest such m belonging to n: a(n)=Min(m; Mod(A000984(m), (m+n)!/m!)=0)

Extensions

More terms from Naohiro Nomoto, Apr 21 2002
a(16)-a(17) from Vaclav Kotesovec, Sep 06 2019
a(18)-a(25) from David A. Corneth, Mar 28 2021
a(26)-a(31) from David A. Corneth confirmed and terms a(32) onward added by Max Alekseyev, Sep 24 2024
Showing 1-6 of 6 results.