A065351 Duplicate of A002503.
5, 14, 27, 41, 44, 65, 76, 90, 109, 125, 139, 152, 155, 169, 186, 189, 203
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 5 + 14 + 27 + 41 = 87.
Accumulate[Select[Range[800],Divisible[Binomial[2#,#],(#+1)^2]&]] (* Harvey P. Dale, Apr 18 2011 *)
Select[Range[2, 1200, 2], Mod[Binomial[ #, #/2], # ]==0&]
val(n, p) = my(r=0); while(n, r+=n\=p);r is(n) = {if(valuation(n, 2) == 0, return(0)); my(f = factor(n)); for(i=1, #f~, if(val(n, f[i, 1]) - 2 * val(n/2, f[i, 1]) - f[i, 2] < 0, return(0))); return(1)} \\ David A. Corneth, Jul 29 2017
q:= k-> is(denom((2*k-1)!/(k!)^2)=1): select(q, [$1..600])[]; # Alois P. Heinz, Feb 06 2025
Select[Range[500], IntegerQ[(2 # - 1)!/#!^2] &] (* Arkadiusz Wesolowski, Jul 01 2012 *)
a065350 n = a065350_list !! (n-1) a065350_list = zipWith mod (tail a000984_list) (drop 2 a000290_list) -- Reinhard Zumkeller, Sep 16 2014
Table[Mod[Binomial[2 n, n], (n + 1)^2], {n, 100}] (* Bruno Berselli, Jan 06 2014 *)
a(n) = { binomial(2*n, n) % (n + 1)^2 } \\ Harry J. Smith, Oct 17 2009
n=4: a(4)=19 means that C(38,19)=35345263800 is divisible by (19+1)(19+2)(19+3)(19+4)=23!/19!=20*21*22*23=215520; the quotient is 166315. Smaller (<19) central binomial coefficients are not divisible by such a product of 4 successive terms; the corresponding quotients for n = 1, 2, 3, 4, 5,... are 1, 1, 13, 166315, 9120910752273999,...
Do[m = 1; While[Not[Divisible[Binomial[2*m,m],(m+n)!/m!]], m++]; Print[m], {n, 1, 16}] (* Vaclav Kotesovec, Sep 05 2019 *)
\\ See Corneth link
Comments