cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A080383 Number of j (0 <= j <= n) such that the central binomial coefficient C(n,floor(n/2)) = A001405(n) is divisible by C(n,j).

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 8, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 8, 3, 6, 5, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6
Offset: 0

Views

Author

Labos Elemer, Mar 12 2003

Keywords

Examples

			For n <= 500 only a few values of a(n) arise: {1,2,3,4,5,6,7,8,10,11,14}.
From _Jon E. Schoenfield_, Sep 15 2019: (Start)
a(n)=1 occurs only at n=0.
a(n)=2 occurs only at n=1.
a(n)=3 occurs for all even n > 0 such that C(n,j) divides C(n,n/2) only at j = 0, n/2, and n. (This is the case for about 4/9 of the first 100000 terms, and there appear to be nearly as many terms for which a(n)=6.)
a(n)=4 occurs only at n=3.
For n <= 100000, the only values of a(n) that occur are 1..16, 18, 19, 22, 23, and 26.
   k | Indices n (up to 100000) at which a(n)=k
  ---+-------------------------------------------------------
   1 | 0
   2 | 1
   3 | 2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 24, ...
   4 | 3
   5 | 40, 176, 208, 480, 736, 928, 1248, 1440, ... (A327430)
   6 | 5, 7, 9, 11, 15, 17, 19, 21, 23, 27, 29, ... (A080384)
   7 | 12, 30, 56, 84, 90, 132, 154, 182, 220, ...  (A080385)
   8 | 25, 37, 169, 199, 201, 241, 397, 433, ...    (A080386)
   9 | 1122, 1218, 5762, 11330, 12322, 15132, ...   (A327431)
  10 | 13, 31, 41, 57, 85, 91, 133, 155, 177, ...   (A080387)
  11 | 420, 920, 1892, 1978, 2444, 2914, 3198, ...
  12 | 1103, 1703, 2863, 7773, 10603, 15133, ...
  13 | 12324, 37444
  14 | 421, 921, 1123, 1893, 1979, 1981, 2445, ...
  15 | 4960, 6956, 13160, 16354, 18542, 24388, ...
  16 | 11289, 16483, 36657, 62653, 89183
  17 |
  18 | 4961, 6957, 12325, 13161, 16355, 18543, ...
  19 | 16356, 88510, 92004
  20 |
  21 |
  22 | 16357, 88511, 90305, 92005
  23 | 90306
  24 |
  25 |
  26 | 90307
(End)
		

Crossrefs

Programs

  • Magma
    [#[j:j in [0..n]| Binomial(n,Floor(n/2)) mod Binomial(n,j) eq 0]:n in [0..100]]; // Marius A. Burtea, Sep 15 2019
  • Mathematica
    Table[Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/Binomial[n, j]], {j, 0, n}], True], {n, 0, 500}] (* adapted by Vincenzo Librandi, Jul 29 2017 *)
  • PARI
    a(n) = my(b=binomial(n, n\2)); sum(i=0, n, (b % binomial(n, i)) == 0); \\ Michel Marcus, Jul 29 2017
    
  • PARI
    a(n) = {if(n==0, return(1)); my(bb = binomial(n, n\2), b = n); res = 2 + !(n%2) + 2 * (n>2 && n%2 == 1); for(i = 2, (n-1)\2, res += 2*(bb%b==0); b *= (n + 1 - i) / i); res} \\ David A. Corneth, Jul 29 2017
    

Extensions

Edited by Dean Hickerson, Mar 14 2003
Offset corrected by David A. Corneth, Jul 29 2017

A002503 Numbers k such that binomial(2*k,k) is divisible by (k+1)^2.

Original entry on oeis.org

5, 14, 27, 41, 44, 65, 76, 90, 109, 125, 139, 152, 155, 169, 186, 189, 203, 208, 209, 219, 227, 230, 237, 265, 275, 298, 307, 311, 314, 321, 324, 329, 344, 377, 413, 419, 428, 434, 439, 441, 449, 458, 459, 467, 475
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Mar 28 2021: (Start)
Balakram (1929) proved that:
1) This sequence is infinite.
2) If m is an even perfect number (A000396) then m-1 is a term.
3) If m = p*q - 1, where p and q are primes, and (3/2)*p < q < 2*p, then m is a term.
4) m is a term if and only if Sum_{k>=1} floor(2*m/p^k) >= 2 * Sum_{k>=1} floor((m+1)/p^k), for all primes p. (End)

References

  • Hoon Balakram, On the values of n which make (2n)!/(n+1)!(n+1)! an integer, J. Indian Math. Soc., Vol. 18 (1929), pp. 97-100.
  • Thomas Koshy, Catalan numbers with applications, Oxford University Press, 2008, pp. 69-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Positions of zeros in A065350.
Equals A067348(n+2)/2 - 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a002503 n = a002503_list !! (n-1)
    a002503_list = map (+ 1) $ elemIndices 0 a065350_list
    -- Reinhard Zumkeller, Sep 16 2014
    
  • Mathematica
    Select[Range[500],Divisible[Binomial[2#,#],(#+1)^2]&] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    isok(n) = binomial(2*n, n) % (n+1)^2 == 0; \\ Michel Marcus, Jan 11 2016

Formula

A065350(a(n)) = 0. - Reinhard Zumkeller, Sep 16 2014

Extensions

Balakram reference corrected by T. D. Noe, Jan 16 2007

A058008 Numbers k such that (2*k - 1)!/(k!)^2 is an integer.

Original entry on oeis.org

1, 6, 15, 28, 42, 45, 66, 77, 91, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 468, 476, 483, 493, 496, 510, 527, 551, 558, 561, 570
Offset: 1

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Comments

Original name was: Numbers n such that gcd(2*n,C(2*n,n))=2*n.
For n a prime power (see A000961) we have gcd(2*n,C(2*n,n))=2. - Arkadiusz Wesolowski, Jul 01 2012
Also, positions where A075055 differs from A000984. - Ralf Stephan, Dec 11 2004
From Peter Bala, Aug 21 2025: (Start)
Also numbers k such that (2*k - 2)!/(k!)^2 is an integer (since (2*k - 1)!/(k!)^2 + (2*k - 2)!/(k!)^2 = 2*Catalan(k-1) for k >= 1). Equivalently, numbers k such that Catalan(k-1) is divisible by k.
Since for prime p, Catalan(p-1) == -1 (mod p), the entries in this list are all nonprime. (End)

Crossrefs

Programs

  • Maple
    q:= k-> is(denom((2*k-1)!/(k!)^2)=1):
    select(q, [$1..600])[];  # Alois P. Heinz, Feb 06 2025
  • Mathematica
    Select[Range[500], IntegerQ[(2 # - 1)!/#!^2] &] (* Arkadiusz Wesolowski, Jul 01 2012 *)

Formula

Appears to be A067348(n)/2. - Benoit Cloitre, Mar 21 2003
Terms >1 are given by A002503+1. - Benoit Cloitre, Dec 09 2017

Extensions

Name changed by Arkadiusz Wesolowski, Jul 01 2012

A067315 Numbers k such that binomial(k, floor(k/2)) is not divisible by k.

Original entry on oeis.org

4, 6, 8, 10, 14, 16, 18, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 86, 88, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 134, 136, 138, 140
Offset: 1

Views

Author

Labos Elemer, Jan 14 2002

Keywords

Comments

All the terms are even. - Amiram Eldar, Aug 24 2024

Crossrefs

Cf. A001405, A042970, A042996 (complement), A067348.

Programs

  • Mathematica
    Select[ Range[ 2, 150, 2 ], Mod[ Binomial[ #, #/2 ], # ]>0& ]
  • PARI
    is(k) = binomial(k, k\2) % k > 0; \\ Amiram Eldar, Aug 24 2024

A080394 Numbers k such that binomial(k, floor(k/2)) is divisible by k^2.

Original entry on oeis.org

1, 195, 273, 357, 385, 399, 585, 627, 665, 897, 935, 945, 957, 975, 1071, 1085, 1155, 1209, 1235, 1395, 1547, 1581, 1595, 1705, 1771, 1848, 1881, 1925, 1935, 1995, 2035, 2091, 2193, 2255, 2295, 2331, 2365, 2405, 2475, 2574, 2583, 2585, 2639, 2665, 2679
Offset: 1

Views

Author

Labos Elemer, Mar 18 2003

Keywords

Examples

			Very few values are even, like 1848 and 2574 (in A067348).
		

Crossrefs

Programs

  • Mathematica
    Do[s=Binomial[n, Floor[n/2]]/n^2; If[IntegerQ[s], Print[n]], {n, 1, 10000}]
  • PARI
    is(k) = !(binomial(k, k\2) % n^2); \\ Amiram Eldar, Aug 11 2024

A048618 Even numbers n such that binomial(n,n/2) is divisible by n/2.

Original entry on oeis.org

2, 4, 12, 30, 40, 56, 84, 90, 132, 154, 176, 182, 208, 220, 252, 280, 306, 312, 340, 374, 380, 408, 418, 420, 440, 456, 462, 476, 480, 532, 552, 598, 616, 624, 630, 644, 650, 660, 690, 736, 756, 828, 840, 858, 870, 880, 884, 900, 918, 920, 928, 936, 952, 966
Offset: 1

Views

Author

Keywords

Examples

			For n=30, binomial(30,15) = 155117520 = 15^10341168, so 30 is a term.
		

Crossrefs

Cf. A001405, A020475, A014847, A067348 (binomial(2*n,n) is divisible by 2*n).

Programs

  • Maple
    a:=[];
    for n from 1 to 1000 do if ( binomial(2*n,n) mod n ) = 0 then a:=[op(a),2*n]; fi; od;
    a;   # N. J. A. Sloane, Aug 03 2017
  • Mathematica
    Select[Range[2,1000,2],Mod[Binomial[#,#/2],#/2]==0&] (* Harvey P. Dale, Jan 23 2025 *)

Formula

a(n) = 2 * A014847(n). - Rémy Sigrist, Aug 27 2017

Extensions

Definition corrected by N. J. A. Sloane, Aug 03 2017

A080392 Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.

Original entry on oeis.org

2, 420, 920, 1122, 1218, 1892, 1978, 2444, 2914, 3198, 3782, 4028, 4136, 4292, 4664, 4958, 4960, 5330, 5762, 5986, 6020, 6032, 6710, 6834, 6864, 6882, 6954, 6956, 6968, 7106, 7130, 7140, 7238, 7254, 7448, 7616, 8178, 8190, 8400, 8692, 9462, 9506, 10712, 11060, 11288
Offset: 1

Views

Author

Labos Elemer, Mar 17 2003

Keywords

Comments

Numbers arising in A067348 and not present in A080385.
Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - Peter Luschny, Aug 04 2017

Examples

			A080383(2) = 3;
A080383(420) = 11;
A080383(920) = 11;
A080383(1122) = 9;
A080383(1218) = 9.
		

Crossrefs

Programs

  • Maple
    isa := proc(n)  local bn, bm;
    if n mod 2 = 0 then bn := binomial(n, iquo(n,2)):
    if modp(bn, n) = 0 then
       bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0):
       return 1 <> add(bm(n, j), j=2..iquo(n,2)-1)
    fi fi; false end:
    select(isa, [$1..5000]); # Peter Luschny, Aug 04 2017
  • Mathematica
    Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}]
    (* Second program: *)
    Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* Michael De Vlieger, Jul 30 2017 *)

Extensions

More terms from Michael De Vlieger, Jul 30 2017

A080395 Even numbers k such that the central binomial coefficient A000984(k, k/2) is divisible by k^2.

Original entry on oeis.org

1848, 2574, 4004, 4290, 6732, 7480, 8398, 12012, 12236, 17710, 20930, 22770, 24570, 24650, 24882, 25080, 25194, 26796, 27132, 30160, 31668, 36540, 36708, 37674, 37944, 38454, 47124, 47740, 51282, 51480, 53200, 57288, 62160, 68376, 69930, 70840, 73260, 75480, 83640
Offset: 1

Views

Author

Labos Elemer, Mar 18 2003

Keywords

Comments

a(n)/2 is a term of A121943 for all n. - Amiram Eldar, Mar 07 2022

Crossrefs

Programs

  • Mathematica
    Do[s=Binomial[n, n/2]/n^2; If[IntegerQ[s], Print[n]], {n, 1, 50000}]
    Select[2Range[50000],Mod[Binomial[#,#/2],#^2]==0&] (* Harvey P. Dale, Jan 27 2025 *)

Extensions

Name corrected and more terms added by Amiram Eldar, Mar 07 2022
Showing 1-8 of 8 results.