A002523 a(n) = n^4 + 1.
1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 10001, 14642, 20737, 28562, 38417, 50626, 65537, 83522, 104977, 130322, 160001, 194482, 234257, 279842, 331777, 390626, 456977, 531442, 614657, 707282, 810001, 923522, 1048577, 1185922, 1336337, 1500626, 1679617
Offset: 0
References
- M. Mabkhout, "Minoration de P(x^4+1)", Rend. Sem. Fac. Sci. Univ. Cagliari 63 (2) (1993), 135-148.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jung-Jo Lee and M. Ram Murty, Dirichlet series and hyperelliptic curves, Forum Math. 19 (2007), 677-705.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to values of cyclotomic polynomials of integer argument.
Programs
-
Magma
[n^4 + 1: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
-
Maple
A002523 := proc(n) numtheory[cyclotomic](8,n) ; end proc: seq(A002523(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
Table[n^4+1,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *) LinearRecurrence[{5, -10, 10, -5, 1},{1, 2, 17, 82, 257},30] (* Ray Chandler, Aug 26 2015 *)
-
Maxima
A002523(n):=n^4+1$ makelist(A002523(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
a(n)=n^4+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 - 3*x + 17*x^2 + 7*x^3 + 2*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi)) / (2*sqrt(2) * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))) = 1.578477579667136838318... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 - Pi * (cos(Pi/sqrt(2)) * sinh(Pi/sqrt(2)) + cosh(Pi/sqrt(2)) * sin(Pi/sqrt(2))) / (sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = 0.54942814871987317922929... . - Vaclav Kotesovec, Feb 14 2015
Product_{n>=1} (1 - 1/a(n)) = 2*Pi^2/(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Amiram Eldar, Jan 26 2024
Comments