cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002523 a(n) = n^4 + 1.

Original entry on oeis.org

1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 10001, 14642, 20737, 28562, 38417, 50626, 65537, 83522, 104977, 130322, 160001, 194482, 234257, 279842, 331777, 390626, 456977, 531442, 614657, 707282, 810001, 923522, 1048577, 1185922, 1336337, 1500626, 1679617
Offset: 0

Views

Author

Keywords

Comments

a(n) = Phi_8(n), where Phi_k is the k-th cyclotomic polynomial.
All odd prime factors of a(n) are congruent to 1 modulo 8. - Nick Hobson, Jan 14 2007
Lee and Murty, p. 685: "In spite of these remarkable advances, we are still unable to determine if n^4 + 1 is infinitely often a squarefree number". - Jonathan Vos Post, Sep 18 2007
Since a(n)*a(m) = (n^4+1)*(m^4+1) = ((n*m)^2-1)^2 + (n^2+m^2)^2, a(n)*a(m) is obvious member of A000404 for n*m > 1. Additionally, if m and n are the legs of a Pythagorean triple, then a(m)*a(n) is the member of A111925. - Altug Alkan, Apr 08 2016

References

  • M. Mabkhout, "Minoration de P(x^4+1)", Rend. Sem. Fac. Sci. Univ. Cagliari 63 (2) (1993), 135-148.

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 - 3*x + 17*x^2 + 7*x^3 + 2*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi)) / (2*sqrt(2) * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))) = 1.578477579667136838318... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 - Pi * (cos(Pi/sqrt(2)) * sinh(Pi/sqrt(2)) + cosh(Pi/sqrt(2)) * sin(Pi/sqrt(2))) / (sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = 0.54942814871987317922929... . - Vaclav Kotesovec, Feb 14 2015
Product_{n>=1} (1 - 1/a(n)) = 2*Pi^2/(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Amiram Eldar, Jan 26 2024