A002559 Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, 426389, 499393, 514229, 646018, 925765, 1136689, 1278818
Offset: 1
References
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
- John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 187.
- Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 86.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.3, p. 200.
- Richard K. Guy, Unsolved Problems in Number Theory, D12.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, notes on ch. 24.6 (p. 412)
- Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
- Richard A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ryuji Abe and Benoît Rittaud, On palindromes with three or four letters associated to the Markoff spectrum, Discrete Mathematics, Vol. 340, No. 12 (2017), pp. 3032-3043.
- Tom Ace, Markoff numbers.
- Enrico Bombieri, Continued fractions and the Markoff tree, Expo. Math., Vol. 25, No. 3 (2007), pp. 187-213.
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Markoff triples and strong approximation, Comptes Rendus Mathematique, Vol. 354, No. 2 (2016), pp. 131-135; arXiv preprint, arXiv:1505.06411 [math.NT], 2015.
- Roger Descombes, Problèmes d'approximation diophantienne, L'Enseignement Math. (2), Vol. 6 (1960), pp. 18-26.
- Roger Descombes, Problèmes d'approximation diophantienne, L'Enseignement Math. (2), Vol. 6 (1960), pp. 18-26. [Annotated scanned copy]
- Jonathan David Evans and Ivan Smith, Markov numbers and Lagrangian cell complexes in the complex projective plane, Geometry & Topology, Vol. 22 (2018), pp. 1143-1180; arXiv preprint, arXiv:1606.08656 [math.SG], 2016-2017.
- Sam Evans, Perrine Jouteur, Sophie Morier-Genoud, and Valentin Ovsienko, On q-deformed Markov numbers. Cohn matrices and perfect matchings with weighted edges, hal-05186307 (2025). See p. 2.
- Georg Frobenius, Über die Markoffschen Zahlen, Sitzungsberichte der Königlichen Preußischen Akademie der Wissenschaften, Jahrgang 1913.
- Carlos A. Gómez, Jhonny C. Gómez, and Florian Luca, Markov triples with k-generalized Fibonacci components, Annales Mathematicae et Informaticae, Vol. 52 (2020), pp. 107-115.
- Richard K. Guy, Don't try to solve these problems, Amer. Math. Monthly, Vol. 90, No. 1 (1983), pp. 35-41.
- Yasuaki Gyoda, Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz, arXiv:2109.09639 [math.NT], 2021.
- Hayder Raheem Hashim and Szabolcs Tengely, Solutions of a generalized markoff equation in Fibonacci numbers, Mathematica Slovaca, Vol. 70, No. 5 (2020), pp. 1069-1078.
- Masanobu Kaneko, Congruences of Markoff numbers via Farey parametrization, Preliminary Report, Dec 2011, AMS 1078-11-124, listed in Abstracts of Papers Presented to AMS, Vol.33, No.2, Issue 168, Spring 2012.
- Sebastien Labbé, Mélodie Lapointe, and Wolfgang Steiner, A q-analog of the Markoff injectivity conjecture holds, arXiv:2212.09852 [math.CO], 2022.
- Clément Lagisquet, Edita Pelantová, Sébastien Tavenas, and Laurent Vuillon, On the Markov numbers: fixed numerator, denominator, and sum conjectures, arXiv:2010.10335 [math.CO], 2020.
- Mong Lung Lang and Ser Peow Tan, A simple proof of the Markoff conjecture for prime powers, Geometriae Dedicata, Vol. 129 (2007), pp. 15-22; arXiv preprint, arXiv:math/0508443 [math.NT], 2005.
- Kyungyong Lee, Li Li, Michelle Rabideau, and Ralf Schiffler, On the ordering of the Markov numbers, arXiv:2010.13010 [math.NT], 2020.
- James Propp, The combinatorics of Markov numbers, U. Wisconsin Combinatorics Seminar, April 4, 2005.
- S. G. Rayaguru, M. K. Sahukar, and G. K. Panda, Markov equation with components of some binary recurrent sequences, Notes on Number Theory and Discrete Mathematics, Vol. 26, No. 3 (2020), pp. 149-159.
- Norbert Riedel, On the Markoff Equation, arXiv:1208.4032 [math.NT], 2012-2015.
- Julieth F. Ruiz, Jose L. Herrera, and Jhon J. Bravo, Markov Triples with Generalized Pell Numbers, Mathematics 12, 108, (2024).
- Anitha Srinivasan, Markoff numbers and ambiguous classes, Journal de théorie des nombres de Bordeaux, 21 no. 3 (2009), pp. 757-770.
- Anitha Srinivasan, The Markoff-Fibonacci Numbers, Fibonacci Quart., Vol. 58, No. 5 (2020), pp. 222-228.
- Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
- Eric Weisstein's World of Mathematics, Markov Number.
- Wikipedia, Markov number.
- Don Zagier, On the number of Markoff numbers below a given bound, Mathematics of Computation, Vol. 39, No. 160 (1982), pp. 709-723.
- Ying Zhang, An Elementary Proof of Markoff Conjecture for Prime Powers, arXiv:math/0606283 [math.NT], 2006-2007.
- Ying Zhang, Congruence and uniqueness of certain Markov numbers, Acta Arithmetica, Vol. 128 (2007), pp. 295-301.
Programs
-
Mathematica
m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[ IntegerQ[a], m = Union[ Join[m, {a}]]]; If[ IntegerQ[b], m = Union[ Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 40] (* Robert G. Wilson v, Oct 05 2005 *) terms = 40; depth0 = 10; Clear[ft]; ft[n_] := ft[n] = Module[{f}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, {g[[1]], g[[3]], 3*g[[1]]*g[[3]] - g[[2]]}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, {g[[2]], g[[3]], 3*g[[2]]*g[[3]] - g[[1]]}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, terms]&]; ft[n = depth0]; ft[n++]; While[ft[n] != ft[n - 1], n++]; Print["depth = n = ", n]; A002559 = ft[n] (* Jean-François Alcover, Aug 29 2017 *) MAX=10^10; data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]
Xianwen Wang, Aug 22 2021 *) -
Python
markov = set[tuple[int, int, int]] def MarkovNumbers(len: int = 50, MAX: int = 10**10) -> list[int]: cur: markov = {(1, 1, 1), (1, 1, 2), } def step(triples: markov) -> markov: ret: markov = set() for (a, b, c) in triples: for x, y, z in [(a, b, c), (b, c, a), (c, a, b)]: t = (x, y, 3 * x * y - z) if max(t) < MAX: ret.add(t) return ret while True: new = step(cur) if new == cur: break cur = new return sorted({n for triple in cur for n in triple})[:len] print(MarkovNumbers(len=42)) # Peter Luschny, Aug 10 2025
Extensions
Name clarified by Wolfdieter Lang, Jan 22 2015
Comments