cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002597 Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.

Original entry on oeis.org

1, 1, 3, 6, 9, 15, 25, 34, 51, 73, 97, 132, 178, 226, 294, 376, 466, 582, 722, 872, 1062, 1282, 1522, 1812, 2147, 2507, 2937, 3422, 3947, 4557, 5243, 5978, 6825, 7763, 8771, 9912, 11172, 12516, 14028, 15680, 17444, 19404, 21540, 23808, 26316, 29028, 31908
Offset: 0

Views

Author

Keywords

Comments

Old name was: A generalized partition function.

References

  • Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064349.

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n=0, 1, add(add(d *`if`(d<4, d, 0),
          d=numtheory[divisors](j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*If[d<4, d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
    LinearRecurrence[{1,2,1,-4,-5,3,6,3,-5,-4,1,2,1,-1},{1,1,3,6,9,15,25,34,51,73,97,132,178,226},50] (* Harvey P. Dale, Aug 28 2025 *)
  • PARI
    a(n)=round((n\3+1)*((n\3+4)*[1,-1,0][1+n%3]/18-(n%3>1)/27)+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735+405*(-1)^n)/25920) \\ Tani Akinari, May 29 2014

Formula

G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^3). - Henry Bottomley, Sep 17 2001
Euler transform of [1, 2, 3, 0, 0, 0, 0, 0, ...]. - Thomas Wieder, Mar 13 2005
a(n)=floor((160*(n+1)*(-1)^(floor(n/3+2/3)+n)+80*(n^2+15*n+24)*(-1)^(floor(n/3+1/3)+n)+80*(n+2)*(n+11)*(-1)^(floor(n/3)+n)+405*(n+1)*(-1)^n+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735))/25920+1/2). - Tani Akinari, Oct 12 2012

Extensions

More terms from Henry Bottomley, Sep 17 2001
Better name from Joerg Arndt, Oct 12 2012