cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002619 Number of 2-colored patterns on an n X n board.

Original entry on oeis.org

1, 1, 2, 3, 8, 24, 108, 640, 4492, 36336, 329900, 3326788, 36846288, 444790512, 5811886656, 81729688428, 1230752346368, 19760413251956, 336967037143596, 6082255029733168, 115852476579940152, 2322315553428424200, 48869596859895986108
Offset: 1

Views

Author

Keywords

Comments

Also number of orbits in the set of circular permutations (up to rotation) under cyclic permutation of the elements. - Michael Steyer, Oct 06 2001
Moser shows that (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d! is an integer. Here we have k=1. - Michel Marcus, Nov 02 2012

Examples

			n=6: {(123456)}, {(135462), (246513), (351624)} and {(124635), (235146), (346251), (451362), (562413), (613524)} are 3 of the 24 orbits, consisting of 1, 3 and 6 permutations, respectively.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
  • K. Yordzhev, On the cardinality of a factor set in the symmetric group. Asian-European Journal of Mathematics, Vol. 7, No. 2 (2014) 1450027, doi: 10.1142/S1793557114500272, ISSN:1793-5571, E-ISSN:1793-7183, Zbl 1298.05035.

Crossrefs

Cf. A000010.
Cf. A000939, A000940, A089066, A262480, A275527 (other classes of permutations under various symmetries).

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(phi(div[j])^2*(n/div[j])!*div[j]^(n/div[j]),j=1..tau(n))/n^2 end: seq(a(n),n=1..23); # Emeric Deutsch, Aug 23 2005
  • Mathematica
    a[n_] := EulerPhi[#]^2*(n/#)!*#^(n/#)/n^2 & /@ Divisors[n] // Total; a /@ Range[23] (* Jean-François Alcover, Jul 11 2011, after Emeric Deutsch *)
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)^2*d!*(n/d)^d)/n^2} \\ Andrew Howroyd, Sep 09 2018
    
  • Python
    from sympy import totient, factorial, divisors
    def A002619(n): return sum(totient(m:=n//d)**2*factorial(d)*m**d for d in divisors(n,generator=True))//n**2 # Chai Wah Wu, Nov 07 2022

Formula

a(n) = Sum_{k|n} u(n, k)/(nk), where u(n, k) = A047918(n, k).
a(n) = (1/n^2)*Sum_{d|n} phi(d)^2*(n/d)!*d^(n/d), where phi is Euler's totient function (A000010). - Emeric Deutsch, Aug 23 2005
From Richard L. Ollerton, May 09 2021: (Start)
Let A(n,k) = (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d!, then:
A(n,k) = (1/n^2)*Sum_{i=1..n} k^gcd(n,i)*phi(n/gcd(n,i))*(n/gcd(n,i))^gcd(n,i)*gcd(n,i)!.
A(n,k) = (1/n^2)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))^2*(gcd(n,i))^(n/gcd(n,i))*(n/gcd(n,i))!.
a(n) = A(n,1). (End)