A002621 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).
1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94, 121, 155, 194, 241, 295, 359, 431, 515, 609, 717, 837, 973, 1123, 1292, 1477, 1683, 1908, 2157, 2427, 2724, 3045, 3396, 3774, 4185, 4626, 5104, 5615, 6166, 6754, 7386, 8058, 8778, 9542, 10358, 11222, 12142, 13114
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 199
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1).
Programs
-
Maple
A002621:=-1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card
=1)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..51) ; # Zerinvary Lajos, Feb 07 2008 A057077 := proc(n) (-1)^floor(n/2) ; end proc: A061347 := proc(n) op(1+(n mod 3),[1,1,-2]) ; end proc: A002621 := proc(n) 83/288*n^2+55/64*n+2815/3456+11/288*n^3+1/576*n^4+11/128*(-1)^n+1/64*(-1)^n*n; %+ A057077(n)/16 +A061347(n)/27; end proc: seq(A002621(n),n=0..10) ; # R. J. Mathar, Mar 15 2011 -
Mathematica
CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)),{x,0,60}],x] (* Stefan Steinerberger, Jun 10 2007 *) LinearRecurrence[{2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1}, {1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
-
PARI
a(n)=(n+1)*(9*(-1)^n+n^3+21*n^2+145*n+350)\/576 \\ Charles R Greathouse IV, May 23 2013
Formula
a(n) = +2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11).
a(n) = 83*n^2/288 +55*n/64 +2815/3456 +11*n^3/288 +n^4/576 +11*(-1)^n/128 +(-1)^n*n/64 + A057077(n)/16 +A061347(n)/27. - R. J. Mathar, Mar 15 2011
a(n)=floor((n+1)*(9*(-1)^n + n^3 + 21*n^2 + 145*n + 350)/576 + 1/2). - Tani Akinari, Nov 10 2012