cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002622 Number of partitions of at most n into at most 5 parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408, 509, 628, 769, 933, 1125, 1346, 1601, 1892, 2225, 2602, 3029, 3509, 4049, 4652, 5326, 6074, 6905, 7823, 8837, 9952, 11178, 12520, 13989, 15591, 17338, 19236, 21298, 23531, 25949, 28560, 31378, 34412
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 29*x^6 + 42*x^7 + 60*x^8 + ...
a(2) = 4 with partitions 0, 1, 2, 1+1. a(3) = 7 with partitions 0, 1, 2, 1+1, 3, 2+1, 1+1+1. - _Michael Somos_, Apr 24 2014
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001401 (first differences). Column 5 of A092905.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^2 (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 25 2014 *)
    LinearRecurrence[{2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1},  {1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408},  48] (* Georg Fischer, Feb 27 2019 *)
  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 5, 1-x^i))) \\ Altug Alkan, Mar 30 2018

Formula

G.f.: 1/[(1+x^2)*(1-x^3)*(1-x)^4*(1-x^5)*(1+x)^2]. (Corrected Mar 31 2018)
a(n)= 2*a(n-1) -a(n-3) -a(n-5) +2*a(n-8) -a(n-11) -a(n-13) +2*a(n-15) -a(n-16).
G.f.: 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)). - Michael Somos, Apr 24 2014
Euler transform of length 5 sequence [ 2, 1, 1, 1, 1]. - Michael Somos, Apr 24 2014
a(n) = a(n-1) + A001401(n). - Michael Somos, Apr 24 2014
a(n) = round((n+1)*(6*n^4+234*n^3+3326*n^2+20674*n+50651+675*(-1)^n)/86400). - Tani Akinari, May 05 2014