cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001401 Number of partitions of n into at most 5 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765, 4033, 4319
Offset: 0

Views

Author

Keywords

Comments

a(n) = T_{r}(n) for r large, where T_{r}(n) = number of outcomes in which r indistinguishable dice yield a sum r+n-1.
a(n) = coefficient of q^n in the expansion of (m choose 5)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
For n > 4: also number of partitions of n into parts <= 5: a(n) = A026820(n,5). - Reinhard Zumkeller, Jan 21 2010
Number of different distributions of n+15 identical balls in 5 boxes as x,y,z,p,q where 0 < x < y < z < p < q. - Ece Uslu and Esin Becenen, Jan 11 2016 [i.e., a(n) is the number of partitions of n+15 into 5 distinct parts. - R. J. Mathar, Feb 28 2021]
Tengely and Ulas prove that a(n) is a square only for n=1 and 2027. - Michel Marcus, Feb 11 2021

Examples

			(5 choose 5)_q = 1;
(6 choose 5)_q = q^5 + q^4 + q^3 + q^2 + q + 1;
(7 choose 5)_q = q^10 + q^9 + 2*q^8 + 2*q^7 + 3*q^6 + 3*q^5 + 3*q^4 + 2*q^3 + 2*q^2 + q + 1;
(8 choose 5)_q = q^15 + q^14 + 2*q^13 + 3*q^12 + 4*q^11 + 5*q^10 + 6*q^9 + 6*q^8 + 6*q^7 + 6*q^6 + 5*q^5 + 4*q^4 + 3*q^3 + 2*q^2 + q + 1;
so the coefficient of q^0 converges to 1, q^1 to 1, q^2 to 2 and so on.
a(3) = 3, i.e., {1,2,3,4,8}, {1,2,3,5,7}, {1,2,4,5,6}. Number of different distributions of 18 identical balls in 5 boxes as x,y,z,p,q where 0 < x < y < z < p < q. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, row m=5 of Q(m,n) table.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A008284(n+5, 5), n >= 0.
Cf. A008619, A001400, A001399, A008667 (first differences), A008804.
First differences of A002622.

Programs

  • Maple
    with(combstruct):ZL6:=[S,{S=Set(Cycle(Z,card<6))}, unlabeled]:seq(count(ZL6,size=n),n=0..52); # Zerinvary Lajos, Sep 24 2007
    a:= n-> (Matrix(15, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2008
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=5)},unlabelled]: seq(combstruct[count](B, size=n), n=0..52); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^5)), {x, 0, 60} ], x ]
    a[n_] := IntegerPartitions[n, 5] // Length; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jul 13 2012 *)
    LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1},{1,1,2,3,5,7,10,13,18,23,30,37,47,57,70},60] (* Harvey P. Dale, Jan 05 2019 *)
  • PARI
    a(n)=#partitions(n,,5) \\ Charles R Greathouse IV, Sep 15 2014
    
  • PARI
    a(n) = (n^4 + 30*n^3 + 310*n^2 + 1320*n - 90*n*(n%2) + 2880)\2880 \\ Hoang Xuan Thanh, Aug 12 2025

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
a(n) = 1 + (a(n-2) + a(n-3) + a(n-4)) - (a(n-6) + (2*a(n-7)) + a(n-8)) + (a(n-10) + a(n-11) + a(n-12)) - a(n-14). - Norman J. Meluch (norm(AT)iss.gm.com), Mar 09 2000
Let a1(n) = Sum_{i=0..floor(n/3)} (1 + ceiling((n-3*i-1)/2)), a2(n) = Sum_{i=0..floor(n/4)} (1 + ceiling((n-4*i-1)/2) + a1(n-4*i-3)), then a(n) = Sum_{i=0..floor(n/5)} (1 + ceiling((n-5*i-1)/2) + a1(n-5*i-3) + a2(n-5*i-4)). - Jon Perry, Jun 27 2003
(n choose 5)_q=(q^n-1)*(q^(n-1)-1)*(q^(n-2)-1)*(q^(n-3)-1)*(q^(n-4)-1)/((q^5-1)*(q^4-1)*(q^3-1)*(q^2-1)*(q-1)).
a(n) = round(((n+5)^4 + 10*((n+5)^3 + (n+5)^2) - 75*(n+5) - 45*(n+5)*(-1)^(n+5))/2880). - Washington Bomfim, Jul 03 2012
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n+15). - David Neil McGrath, Sep 13 2014
a(n+5) = a(n) + A001400(n) = A001400(n)+A026811(n). - Ece Uslu, Esin Becenen, Jan 11 2016
From Vladimír Modrák, Jul 13 2022: (Start)
a(n) = Sum_{k=0..floor(n/5)} Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0, n + 1 - 3*i - 4*j - 5*k))/2).
a(n) = Sum_{j=0..floor(n/5)} Sum_{i=0..floor(n/4)} floor(((max(0, n + 3 - 4*i - 5*j))^2+4)/12). (End)
a(2n) = a(2n-1) + a(n) - a(n-8) = a(n) + Sum_{k=0..n-1} A008804(k). - David García Herrero, Aug 26 2024
a(n) = floor((n^4 + 30*n^3 + 310*n^2 + 1275*n + 45*n*(-1)^n+2880)/2880). - Hoang Xuan Thanh, Aug 12 2025

Extensions

Additional comments from Michael Somos and Branislav Kisacanin (branislav.kisacanin(AT)delphiauto.com)

A026811 Number of partitions of n in which the greatest part is 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765
Offset: 0

Views

Author

Keywords

Comments

Essentially same as A001401: five zeros followed by A001401.
Also number of partitions of n into exactly 5 parts.

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Cf. A026810, A026812, A026813, A026814, A026815, A026816, A002622 (partial sums), A008667 (first differences).

Programs

  • GAP
    List([0..70],n->NrPartitions(n,5)); # Muniru A Asiru, May 17 2018
  • Mathematica
    Table[Count[IntegerPartitions[n], {5, _}], {n, 0, 55}] (* corrected by Harvey P. Dale, Oct 24 2011 *)
    Table[Length[IntegerPartitions[n, {5}]], {n, 0, 55}] (* Eric Rowland, Mar 02 2017 *)
    CoefficientList[Series[x^5/Product[1 - x^k, {k, 1, 5}], {x, 0, 65}], x] (* Robert A. Russell, May 13 2018 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1}, Append[Table[0,{14}],1],110],9] (* Robert A. Russell, May 17 2018 *)
  • PARI
    a(n)=round((n^4+10*(n^3+n^2)-75*n-45*(-1)^n*n)/2880);
    for(n=0,10000,print(n," ",a(n))); /* b-file format */
    /* Washington Bomfim, Jul 03 2012 */
    
  • PARI
    x='x+O('x^99); concat(vector(5), Vec(x^5/prod(k=1, 5, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

a(n) = round( ((n^4+10*(n^3+n^2)-75*n -45*n*(-1)^n)) / 2880 ). - Washington Bomfim, Jul 03 2012
G.f.: x^5/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). - Joerg Arndt, Jul 04 2012
a(n) = A008284(n,5). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n) = a(2n-1) + a(n+1) + a(n) - a(n-3) - a(n-4);
a(2n+1) = a(2n) + a(n+3) - a(n-5). (End)
From R. J. Mathar, Jun 23 2021: (Start)
a(n) - a(n-5) = A001400(n-5).
a(n) - a(n-4) = A008669(n-5).
a(n) - a(n-3) = A029007(n-5).
a(n) - a(n-2) = A029032(n-5).
a(n) = +a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15). (End)

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 inserted by Joerg Arndt, Jul 04 2012

A069907 Number of hexagons that can be formed with perimeter n. In other words, partitions of n into six parts such that the sum of any 5 is more than the sixth.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 28, 37, 46, 59, 71, 91, 107, 134, 157, 193, 222, 271, 308, 371, 419, 499, 559, 661, 734, 860, 952, 1106, 1216, 1405, 1537, 1764, 1923, 2193, 2381, 2703, 2923, 3301, 3561, 4002, 4302, 4817, 5164
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Crossrefs

Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), this sequence (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • PARI
    concat(vector(6), Vec(x^6*(1-x^4+x^5+x^7-x^8-x^13)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)*(1-x^8)*(1-x^10)) + O(x^80))) \\ Michel Marcus, Jun 24 2017

Formula

G.f.: x^6*(1-x^4+x^5+x^7-x^8-x^13)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)*(1-x^8)*(1-x^10)).
a(2*n+10) = A026812(2*n+10) - A002622(n), a(2*n+11) = A026812(2*n+11) - A002622(n) for n >= 0. - Seiichi Manyama, Jun 08 2017

A288341 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^6)).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 44, 64, 90, 125, 169, 227, 298, 388, 498, 634, 797, 996, 1231, 1513, 1844, 2235, 2689, 3221, 3833, 4542, 5353, 6284, 7341, 8547, 9907, 11447, 13176, 15121, 17293, 19725, 22427, 25436, 28767, 32459, 36529, 41023, 45958, 51385, 57327
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Comments

Number of partitions of at most n into at most 6 parts.

Crossrefs

Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), this sequence (k=6), A288342 (k=7), A288343 (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288253. Column 6 of A092905. A001402 (first differences).

Programs

  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 6, (1-x^i)))) \\ Altug Alkan, Mar 28 2018

A092905 Triangle, read by rows, such that the partial sums of the n-th row form the n-th diagonal, for n>=0, where each row begins with 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 6, 4, 2, 1, 1, 6, 9, 7, 4, 2, 1, 1, 7, 12, 11, 7, 4, 2, 1, 1, 8, 16, 16, 12, 7, 4, 2, 1, 1, 9, 20, 23, 18, 12, 7, 4, 2, 1, 1, 10, 25, 31, 27, 19, 12, 7, 4, 2, 1, 1, 11, 30, 41, 38, 29, 19, 12, 7, 4, 2, 1, 1, 12, 36, 53, 53, 42, 30, 19, 12, 7, 4, 2, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2004

Keywords

Comments

Row sums form A000070, which is the partial sums of the partition numbers (A000041). Rows read backwards converge to the row sums (A000070).
From Alford Arnold, Feb 07 2010: (Start)
The table can also be generated by summing sequences embedded within Table A008284
For example,
1 1 1 1 ... yields 1 2 3 4 ...
1 1 2 2 3 3 ... yields 1 2 4 6 9 12 ...
1 1 2 3 4 5 7 ... yields 1 2 4 7 11 16 ...
(End)
T(n,k) is also count of all 'replacable' cells in the (Ferrers plots of) the partitions on n in exactly k parts. [Wouter Meeussen, Sep 16 2010]
From Wolfdieter Lang, Dec 03 2012: (Start)
The triangle entry T(n,k) is obtained from triangle A072233 by summing the entries of column k up to n (see the partial sum type o.g.f. given by Vladeta Jovovic in the formula section).
Therefore, the o.g.f. for the sequence in column k is x^k/((1-x)* product(1-x^j,j=1..k)).
The triangle with entry a(n,m) = T(n-1,m-1), n >= 1, m = 1, ..., n, is obtained from the partition array A103921 when in row n all entries belonging to part number m are summed (a conjecture). (End)

Examples

			The fourth row (n=3) is {1,3,2,1} and the fourth diagonal is the partial sums of the fourth row: {1,4,6,7,7,7,7,7,...}.
The triangle T(n,k) begins:
n\k 0  1  2  3  4  5  6  7  8  9 10 11 12  ...
0   1
1   1  1
2   1  2  1
3   1  3  2  1
4   1  4  4  2  1
5   1  5  6  4  2  1
6   1  6  9  7  4  2  1
7   1  7 12 11  7  4  2  1
8   1  8 16 16 12  7  4  2  1
9   1  9 20 23 18 12  7  4  2  1
10  1 10 25 31 27 19 12  7  4  2  1
11  1 11 30 41 38 29 19 12  7  4  2  1
12  1 12 36 53 53 42 30 19 12  7  4  2  1
... Reformatted by _Wolfdieter Lang_, Dec 03 2012
T(5,3)=4 because the partitions of 5 in exactly 3 parts are 221 and 311, and they give rise to partitions of 4 in four ways: 221->22 and 211, 311->211 and 31, since both their Ferrers plots have 2 'mobile cells' each. [_Wouter Meeussen_, Sep 16 2010]
T(5,3) = a(6,4) = 4 because the partitions of 6 with 4 parts are 1113 and 1122, with the number of distinct parts 2 and 2, respectively, summing to 4 (see the array A103921). An example for the conjecture given as comment above. - _Wolfdieter Lang_, Dec 03 2012
		

Crossrefs

Antidiagonal sums form the partition numbers (A000041).
Cf. A000070.
Cf. A008284. [Alford Arnold, Feb 07 2010]

Programs

Formula

T(n, k) = sum_{j=0..k} T(n-k, j), with T(n, 0) = 1 for all n>=0. A000070(n) = sum_{k=0..n} T(n, k).
O.g.f.: (1/(1-y))*(1/Product(1-x*y^k, k=1..infinity)). - Vladeta Jovovic, Jan 29 2005

Extensions

Several corrections by Wolfdieter Lang, Dec 03 2012

A288344 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^9)).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 138, 192, 265, 359, 482, 639, 840, 1092, 1410, 1803, 2291, 2889, 3621, 4508, 5584, 6875, 8424, 10269, 12463, 15055, 18115, 21704, 25910, 30814, 36522, 43137, 50794, 59618, 69774, 81422, 94760, 109984, 127338, 147058, 169438
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Comments

Number of partitions of at most n into at most 9 parts.

Crossrefs

Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), A288342 (k=7), A288343 (k=8), this sequence (k=9), A288345 (k=10).
Cf. A288256, A008638 (first differences).

Programs

  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 9, (1-x^i)))) \\ Altug Alkan, Mar 28 2018

A288345 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^10)).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 194, 269, 366, 494, 658, 870, 1137, 1477, 1900, 2430, 3083, 3890, 4874, 6078, 7533, 9294, 11406, 13940, 16955, 20545, 24787, 29800, 35688, 42600, 50670, 60088, 71024, 83714, 98377, 115305, 134771, 157138, 182746, 212038
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Comments

Number of partitions of at most n into at most 10 parts.

Crossrefs

Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), A288342 (k=7), A288343 (k=8), A288344 (k=9), this sequence (k=10).
Cf. A008639 (first differences).

Programs

  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 10, (1-x^i)))) \\ Altug Alkan, Mar 28 2018

A288342 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^7)).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 66, 94, 132, 181, 246, 328, 433, 564, 728, 929, 1177, 1477, 1841, 2277, 2799, 3417, 4150, 5010, 6019, 7194, 8561, 10140, 11964, 14057, 16457, 19195, 22315, 25854, 29865, 34391, 39493, 45224, 51654, 58844, 66877, 75823, 85776, 96820
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Comments

Number of partitions of at most n into at most 7 parts.

Crossrefs

Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), this sequence (k=7), A288343 (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288254.

Programs

  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 7, (1-x^i)))) \\ Altug Alkan, Mar 28 2018

A288343 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^8)).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 96, 136, 188, 258, 347, 463, 609, 795, 1025, 1313, 1665, 2099, 2624, 3262, 4026, 4945, 6035, 7332, 8859, 10660, 12764, 15226, 18083, 21402, 25230, 29647, 34713, 40525, 47155, 54719, 63307, 73056, 84074, 96524, 110536, 126301
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Comments

Number of partitions of at most n into at most 8 parts.

Crossrefs

Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), A288342 (k=7), this sequence (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288255.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)Times@@(1-x^Range[8])),{x,0,50}],x] (* Harvey P. Dale, Dec 06 2017 *)
  • PARI
    x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 8, (1-x^i)))) \\ Altug Alkan, Mar 28 2018

A139672 Convolution of A008619 and A001400.

Original entry on oeis.org

1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257, 346, 451, 587, 746, 946, 1177, 1461, 1786, 2178, 2623, 3151, 3746, 4443, 5223, 6126, 7131, 8283, 9558, 11007, 12603, 14403, 16377, 18588, 21003, 23692, 26618, 29858, 33372, 37244, 41430, 46022, 50972
Offset: 1

Views

Author

Alford Arnold, Apr 29 2008, May 01 2008

Keywords

Comments

This is row 21 of a table of values related to Molien series. It is the product of the sequence on row 3 (A008619) with the sequence on row 7 (A001400).
This table may be constructed by moving the rows of table A008284 to prime locations and generating the composite locations by multiplication in a manner similar to the calculation illustrated in the present sequence.
Rows 1 thru 20 and 22 thru 25 are as follows:

Programs

  • Maple
    a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # Alois P. Heinz, Nov 10 2008
  • Mathematica
    CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,0,-1,2,2,-1,0,-3,1,2,-1},{0,1,2,5,9,17,27,44,65,97,136,191,257},50] (* Harvey P. Dale, Feb 17 2016 *)

Formula

G.f.: x/((x^2+x+1)*(x^2+1)*(x+1)^3*(x-1)^6). - Alois P. Heinz, Nov 10 2008
a(n)= -A049347(n)/27 +(2*n+11)*(6*n^4+132*n^3+914*n^2+2068*n+1055)/69120 -(-1)^n*(51/512+n^2/256+11*n/256+A057077(n)/32 ). - R. J. Mathar, Nov 21 2008

Extensions

More terms from Alois P. Heinz, Nov 10 2008
Corrected A-number in definition. Added formula. - R. J. Mathar, Nov 21 2008
Showing 1-10 of 11 results. Next