A006267
Continued cotangent for the golden ratio.
Original entry on oeis.org
1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Harry J. Smith, Table of n, a(n) for n = 0..7
- Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; Solution, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.
- Jeffrey Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B, Vol. 80B, No. 2 (1976), pp. 285-290.
- Zalman Usiskin, Problem B-266, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 334; Lucas Numbers for Powers of 3, Solution to Problem B-266 by David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315-316.
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion.
Cf.
A000032,
A000204,
A001622,
A001999,
A002666,
A002667,
A002668,
A006266,
A002813,
A045529,
A271223,
A268924.
-
a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
-
c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
-
a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
-
a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024
The next term is too large to include.
A081787
Continued cotangent for sqrt(e).
Original entry on oeis.org
1, 4, 208, 51198, 3265038057, 25300257957809599598, 1548008157389016603196793951803038609594, 15445738611564165990406534887324277271178568836676520360367688416251534382546319
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=exp(1/2);
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081788
Continued cotangent for sin(1).
Original entry on oeis.org
0, 1, 11, 209, 778615, 3961986619787, 108027609649678328362291208, 12797763868538691769539594849146740548395979750179143, 2398705889323117848234063941075093304477004809996203196876904292203062137833411276780250923333345577605421
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=sin(1);
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081789
Continued cotangent for cos(1).
Original entry on oeis.org
0, 1, 3, 31, 1896, 4466398, 51545652359935, 7892797673015743066290382811, 79208317703482281896053478218775642522933780224074809198, 195824124605155340760338534459689354174423866004140103635128465652592661899008938733448659610261796713081609084855
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
Floor[NestList[(#*Floor[#]+1)/(#-Floor[#]) &, Cos[1], 9]] (* Stefano Spezia, Apr 23 2025 *)
-
bn=vector(100);
bn[1]=cos(1);
b(n)=if(n<0, 0, bn[n]);
for(n=2, 10, bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081790
Continued cotangent for tan(1).
Original entry on oeis.org
1, 4, 32, 1158, 1815746, 15716561494212, 1184500978807872650350593387, 5321879016477546178356935033926215638755808624425727229, 28586857373644233013728565794450100157386617152409721820238727067747604580786570816033645416762395120483912199
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
bn=vector(100);
b(n)=if(n<0,0,bn[n]);
bn[1]=tan(1);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081791
Continued cotangent for sinh(1).
Original entry on oeis.org
1, 12, 361, 6098638, 40523300374005, 2249947521757014011818803347, 23934989997298328927868650983263126279480229971908985849, 2858972935444266747494645602151444724302966656792002957565134720098726922500919331865545624811189334200411357440
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=sinh(1);
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081792
Continued cotangent for cosh(1).
Original entry on oeis.org
1, 4, 28, 898, 865865, 6558406221253, 369641727028862496144018420, 168218383805281752399017936550348552720479497871513674, 46139813370820669084709611625366168409170012365100187639338625228748249752136723842763775088752136299316085
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=cosh(1);
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081793
Continued cotangent for tanh(1).
Original entry on oeis.org
0, 1, 7, 135, 35445, 44465908998, 5112887721516309845621, 75234509360529020708450352828794956245887456, 5786575206590910267083400178061771765781639734324927167565054640197289842752623499343753
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=tanh(1);
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081794
Continued cotangent for Pi/4.
Original entry on oeis.org
0, 1, 8, 211, 114681, 118304381067, 14093169772574392414247, 233069007722838136376547872705625127588988391, 148096265277934997326846757550268707006396575812305676278686643630022889932579135326452726
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p900
bn=vector(100);
bn[1]=Pi/4;
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
A081795
Continued cotangent for Pi/3.
Original entry on oeis.org
1, 43, 4975, 87377992, 18385473430682423, 5186411232443302687031694765612941, 47469894147223278266560159220413635233953187522490823346090207081760
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
-
\p1200
bn=vector(100);
bn[1]=Pi/3;
b(n)=if(n<0,0,bn[n]);
for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
a(n)=floor(b(n+1));
Showing 1-10 of 11 results.