A002760 Squares and cubes.
0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1
Keywords
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
- Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10443 (first 1000 terms from Zak Seidov)
- Yuri F. Bilu, Catalan's Conjecture (After Mihilescu), Astérisque, No. 294, 1-26, 2004.
- Yuri F. Bilu, Catalan Without Logarithmic Forms (after Bugeaud, Hanrot and Mihailescu), J. Théor. Nombres Bordeaux 17, 69-85, 2005.
- David Masser, Alan Baker, arXiv:2010.10256 [math.HO], 2020. See p. 4.
- Tauno Metsänkylä, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (NS), Vol. 41, No. 1 (2004), pp. 43-57.
- Preda Mihǎilescu, A Class Number Free Criterion for Catalan's Conjecture, J. Number Th. 99 225-231, 2003.
- Preda Mihǎilescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, J. Reine angew. Math. 572 (2004): 167-195. MR 2076124.
- Paulo Ribenboim, Catalan's Conjecture, Séminaire de Philosophie et Mathématiques, 6 (1994), p. 1-11.
- Paulo Ribenboim, Catalan's Conjecture, Amer. Math. Monthly, Vol. 103(7) Aug-Sept 1996, pp. 529-538.
Crossrefs
Programs
-
Magma
[n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016
-
Mathematica
nMax=2000;Union[Range[0,nMax^(1/2)]^2,Range[0,nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *) nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)
-
PARI
isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016
-
Python
from math import isqrt from sympy import integer_nthroot def A002760(n): def f(x): return n-1+x+integer_nthroot(x,6)[0]-integer_nthroot(x,3)[0]-isqrt(x) m, k = n-1, f(n-1) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 09 2024
Formula
Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020
Comments