cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A050169 Triangle read by rows: T(n,k) = gcd(C(n,k), C(n,k-1)), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 5, 10, 5, 1, 1, 3, 5, 5, 3, 1, 1, 7, 7, 35, 7, 7, 1, 1, 4, 28, 14, 14, 28, 4, 1, 1, 9, 12, 42, 126, 42, 12, 9, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 11, 55, 165, 66, 462, 66, 165, 55, 11, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, table T(n,k) = gcd(n,k)*(n+k-1)!/(n!*k!) read by antidiagonals. - Michael Somos, Jul 19 2002
Apparently, T(n,k)*gcd(C(n+1,k),n+1) = C(n+1,k). - Thomas Anton, Oct 24 2018

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,  1;
  1,  2,  2,  1;
  1,  5, 10,  5,  1;
  1,  3,  5,  5,  3,  1;
  ...
		

References

  • H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163. MR0260659

Crossrefs

Programs

  • GAP
    Flat(List([1..12],n->List([1..n],k->Gcd(Binomial(n,k),Binomial(n,k-1))))); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    /* As triangle */ [[Gcd(Binomial(n,k), Binomial(n,k-1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 25 2018
  • Maple
    a:=(n,k)->gcd(binomial(n,k),binomial(n,k-1)): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[GCD@@{Binomial[n,k],Binomial[n,k-1]},{n,20},{k,n}]//Flatten (* Harvey P. Dale, Aug 06 2017 *)
  • PARI
    T(n,k)=if(n<1 || k<1,0,gcd(n,k)*(n+k-1)!/n!/k!)
    
  • PARI
    T(n,k)=if(k<1 || k>n,0,gcd(n+1,k)*binomial(n,k-1)/k) /* Michael Somos, Mar 03 2004 */
    

Formula

a(2n, n) = n-th Catalan number; see A000108.
Also T(n, k) = gcd(C(n, k), C(n+1, k)).

Extensions

Offset set to 1 by R. J. Mathar, Dec 21 2010
Showing 1-1 of 1 results.