A073166 Duplicate of A050169.
1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 5, 10, 5, 1, 1, 3, 5, 5, 3, 1, 1, 7, 7, 35, 7, 7, 1, 1, 4, 28, 14
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
T(6,2)=5 because binomial(6,2)*gcd(6,2)/6 = 15*2/6 = 5. The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10... 0: 1 1: 1 1 2: 1 1 1 3: 1 1 1 1 4: 1 1 3 1 1 5: 1 1 2 2 1 1 6: 1 1 5 10 5 1 1 7: 1 1 3 5 5 3 1 1 8: 1 1 7 7 35 7 7 1 1 9: 1 1 4 28 14 14 28 4 1 1 10: 1 1 9 12 42 126 42 12 9 1 1 n\m 0 1 2 3 4 5 6 7 8 9 10... ... reformatted - _Wolfdieter Lang_, Feb 23 2014
a107711 n k = a107711_tabl !! n !! k a107711_row n = a107711_tabl !! n a107711_tabl = [1] : zipWith (map . flip div) [1..] (tail $ zipWith (zipWith (*)) a007318_tabl a109004_tabl) -- Reinhard Zumkeller, Feb 28 2014
a:=proc(n,k) if n=0 and k=0 then 1 elif k<=n then binomial(n,k)*gcd(n,k)/n else 0 fi end: for n from 0 to 13 do seq(a(n,k),k=0..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jun 13 2005
T[0, 0] = 1; T[n_, m_] := Binomial[n, m] * GCD[n, m]/n; Table[T[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0: 1 1: 1 1 2: 1 1 1 3: 1 1 3 1 4: 1 1 2 2 1 5: 1 1 5 10 5 1 6: 1 1 3 5 5 3 1 7: 1 1 7 7 35 7 7 1 8: 1 1 4 28 14 14 28 4 1 9: 1 1 9 12 21 126 21 12 9 1 10: 1 1 5 15 30 42 42 30 15 5 1 11: 1 1 11 55 165 66 77 66 165 55 11 1 12: 1 1 6 22 55 99 132 132 99 55 22 6 1 13: 1 1 13 26 143 143 429 1716 429 143 143 26 13 1 ... reformatted. - _Wolfdieter Lang_, Aug 25 2015
nm := 15 : eM := Matrix(nm,nm) : for n from 0 to nm-1 do for m from 0 to n do eM[n+1,m+1] :=coeff(bernoulli(n,x),x,m) ; end do: for m from n+1 to nm-1 do eM[n+1,m+1] := 0 ; end do: end do: eM := LinearAlgebra[MatrixInverse](eM) : for n from 1 to nm do for m from 1 to n do printf("%a,", numer(eM[n,m])) ; end do: end do: # R. J. Mathar, Dec 21 2010
max = 13; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes]; Table[ Take[inv[[n]], n], {n, 1, max}] // Flatten // Numerator (* Jean-François Alcover, Aug 09 2012 *)
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(numerator(binomial(n+1,k)/(n+1)), ", ");); print(););} \\ after Tom Copeland comment; Michel Marcus, Jul 25 2015
The irregular triangle T(n,k) starts n\k 0 1 2 3 4 5 ... 0: 1 1: 1 2: 1 1 3: 1 1 4: 1 3 1 5: 1 2 1 6: 1 5 2 1 7: 1 3 10 1 8: 1 7 5 5 1 9: 1 4 7 5 1 10: 1 9 28 35 3 1 ... reformatted. - _Wolfdieter Lang_, Aug 25 2015
max = 15; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes] // Numerator; t[n_, k_] := inv[[n, k]]; t[n_, k_] /; k == n+1 = 1; Table[t[n-k+1, k], {n, 2, max+1}, {k, 2, Floor[n/2]+1}] // Flatten (* Jean-François Alcover, Jul 22 2015 *)
a(n)=if(n<1,0,sum(k=1,n,if(gcd(n,k) == 1,((n+k-1)!/(n!*k!))%2))) /* Michael Somos, Jul 19 2002 */
Comments