cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002871 a(n) = max_{k=0..n} 2^k*A048993(n,k).

Original entry on oeis.org

1, 2, 4, 12, 48, 200, 1040, 5600, 33600, 222432, 1460928, 11487168, 84713728, 731574272, 6314147840, 55456727040, 548291597568, 5226494727168, 54361802626560, 586042688924160, 6149776714099200, 72895623466265600, 855187250563024896
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers (see Motzkin article for details).
For n>0, a(n) is also the maximum term in row n of the triangle in A227450. - Danny Rorabaugh, Oct 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= n-> max(seq(2^k*Stirling2(n, k), k=0..n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 26 2013
  • Mathematica
    a[n_] := Max[Table[2^k*StirlingS2[n, k], {k, 0, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    a(n) = vecmax(vector(n+1, k, 2^(k-1)*stirling(n, k-1, 2))); \\ Michel Marcus, Feb 25 2015

Formula

a(n) = max{2^k*Stirling2(n,k), k=0..n}. - Sean A. Irvine, Mar 26 2013

Extensions

More terms from Sean A. Irvine, Mar 26 2013
New name from Danny Rorabaugh, Oct 24 2015