A002871 a(n) = max_{k=0..n} 2^k*A048993(n,k).
1, 2, 4, 12, 48, 200, 1040, 5600, 33600, 222432, 1460928, 11487168, 84713728, 731574272, 6314147840, 55456727040, 548291597568, 5226494727168, 54361802626560, 586042688924160, 6149776714099200, 72895623466265600, 855187250563024896
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- Index entries for sequences related to sorting
Programs
-
Maple
a:= n-> max(seq(2^k*Stirling2(n, k), k=0..n)): seq(a(n), n=0..30); # Alois P. Heinz, Mar 26 2013
-
Mathematica
a[n_] := Max[Table[2^k*StirlingS2[n, k], {k, 0, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 25 2015 *)
-
PARI
a(n) = vecmax(vector(n+1, k, 2^(k-1)*stirling(n, k-1, 2))); \\ Michel Marcus, Feb 25 2015
Formula
a(n) = max{2^k*Stirling2(n,k), k=0..n}. - Sean A. Irvine, Mar 26 2013
Extensions
More terms from Sean A. Irvine, Mar 26 2013
New name from Danny Rorabaugh, Oct 24 2015
Comments