A002940 Arrays of dumbbells.
1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
Offset: 1
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Carlos Alirio Rico Acevedo and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 23-24.
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
Crossrefs
Programs
-
Haskell
a002940 n = a002940_list !! (n-1) a002940_list = 1 : 4 : 11 : zipWith (+) (zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list) (drop 5 a000045_list) -- Reinhard Zumkeller, Jan 18 2014
-
Magma
m:=35; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019 -
Mathematica
a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
-
PARI
my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
-
Sage
((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
Formula
a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023
Extensions
More terms from Henry Bottomley, Jun 02 2000
Comments