cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002945 Continued fraction for cube root of 2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).

Programs

  • Magma
    ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
  • Maple
    N:= 100: # to get a(1) to a(N)
    a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
    for n from 2 to N do
      a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
      p[n+1] := a[n]*p[n] + p[n-1];
      q[n+1] := a[n]*q[n] + q[n-1];
    od:
    seq(a[i],i=1..N); # Robert Israel, Jul 30 2014
  • Mathematica
    ContinuedFraction[Power[2, (3)^-1],70] (* Harvey P. Dale, Sep 29 2011 *)
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
    

Formula

From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)

Extensions

BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024