cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002996 a(n) = Sum_{k|n} mu(k)*Catalan(n/k) (mu = Moebius function A008683).

Original entry on oeis.org

1, 1, 4, 12, 41, 126, 428, 1416, 4857, 16753, 58785, 207868, 742899, 2674010, 9694799, 35356240, 129644789, 477633711, 1767263189, 6564103612, 24466266587, 91482504853, 343059613649, 1289903937896, 4861946401410, 18367352329251, 69533550911142, 263747949075908, 1002242216651367
Offset: 1

Views

Author

Keywords

Comments

Moebius transform of A000108.

References

  • A. Errera, Analysis situs - Un problème d'énumération, Mémoires Acad. Bruxelles, Classe des sciences, Série 2, Vol. XI, Fasc. 6, No. 1421 (1931), 26 pp.
  • A. Errera, De quelques problèmes d'analysis situs, Comptes Rend. Congr. Nat. Sci. Bruxelles, (1930), 106-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002996 n = sum $ zipWith (*) (map a008683 divs) (map a000108 $ reverse divs)
       where divs = a027750_row n
    -- Reinhard Zumkeller, Dec 22 2013
  • Mathematica
    Table[Sum[MoebiusMu[k] CatalanNumber[n/k],{k,Divisors[n]}],{n,30}] (* Harvey P. Dale, Oct 07 2014 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)*binomial(2*d,d)/(d+1)); \\ Joerg Arndt, Jun 15 2013
    

Formula

G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = 1/(1 - x/(1 - x/(1 - x/(1 - ...)))). - Ilya Gutkovskiy, May 06 2017

Extensions

More terms from James Sellers, Sep 08 2000
References corrected by M. F. Hasler, Aug 24 2012