cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002995 Number of unlabeled planar trees (also called plane trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 14, 34, 95, 280, 854, 2694, 8714, 28640, 95640, 323396, 1105335, 3813798, 13269146, 46509358, 164107650, 582538732, 2079165208, 7457847082, 26873059986, 97239032056, 353218528324, 1287658723550, 4709785569184
Offset: 0

Views

Author

Keywords

Comments

Noncrossing handshakes of 2(n-1) people (each using only one hand) on round table, up to rotations - Antti Karttunen, Sep 03 2000
Equivalently, the number of noncrossing partitions up to rotation composed of n-1 blocks of size 2. - Andrew Howroyd, May 04 2018
a(n), n>2, is also the number of oriented cacti on n-1 unlabeled nodes with all cutpoints of separation degree 2, i.e. ones shared only by two (cyclic) blocks. These are digraphs (without loops) that have a unique Eulerian tour. Such digraphs with labeled nodes are enumerated by A102693. - Valery A. Liskovets, Oct 19 2005
Labeled plane trees are counted by A006963. - David Callan, Aug 19 2014
This sequence is similar to A000055 but those trees are not embedded in a plane. - Michael Somos, Aug 19 2014

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 14*x^7 + 34*x^8 + 95*x^9 + ...
a(7) = 14 = 11 + 3 because there are 11 trees with 7 nodes but three of them can be embedded in a plane in two ways. These three trees have degree sequences 4221111, 3321111, 3222111, where there are two trees with each degree sequence but in the first, the two nodes of degree two are adjacent, in the second, the two nodes of degree three are adjacent, and in the third, the node of degree three is adjacent to two nodes of degree two. - _Michael Somos_, Aug 19 2014
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 304.
  • A. Errera, De quelques problèmes d'analysis situs, Comptes Rend. Congr. Nat. Sci. Bruxelles, (1930), 106-110.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.26).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with (powseries): with (combstruct): n := 27: Order := n+2: sys := {C = Cycle(B), B = Union(Z,Prod(B,B))}: G003239 := (convert(gfseries(sys,unlabeled,x) [C(x)], polynom)) / x: G000108 := convert(taylor((1-sqrt(1-4*x)) / (2*x),x),polynom): G002995 := 1 + G003239 + (eval(G000108,x=x^2) - G000108^2)/2: A002995 := 1,1,1,seq(coeff(G002995,x^i),i=1..n); # Ulrich Schimke, Apr 05 2002
    with(combinat): with(numtheory): m := 2: for p from 2 to 28 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od : # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    a[0] = a[1] = 1; a[n_] := (1/(2*(n-1)))*Sum[ EulerPhi[(n-1)/d]*Binomial[2*d, d], {d, Divisors[n-1]}] - CatalanNumber[n-1]/2 + If[ EvenQ[n], CatalanNumber[n/2-1]/2, 0]; Table[ a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 07 2012, from formula *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    a(n) = if (n<2, 1, n--; sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/(2*n) - catalan(n)/2 + if ((n-1) % 2, 0, catalan((n-1)/2)/2)); \\ Michel Marcus, Jan 23 2016

Formula

G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A003239 and C is g.f. of A000108(n-1).
a(n) = 1/(2*(n-1))*sum{d|(n-1)}(phi((n-1)/d)*binomial(2d, d)) - A000108(n-1)/2 + (if n is even) A000108(n/2-1)/2.

Extensions

More terms, formula from Christian G. Bower, Dec 15 1999
Name corrected ("labeled" --> "unlabeled") by David Callan, Aug 19 2014

A346925 a(n) = Sum_{d|n} mu(n/d) * binomial(3*d,d) / (2*d+1).

Original entry on oeis.org

1, 2, 11, 52, 272, 1414, 7751, 43208, 246663, 1430440, 8414639, 50065628, 300830571, 1822758766, 11124755380, 68328711696, 422030545334, 2619630794574, 16332922290299, 102240108466928, 642312451209982, 4048514835624478, 25594403741131679, 162250237951706584
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Comments

Moebius transform of A001764.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[3 d, d]/(2 d + 1), {d, Divisors[n]}], {n, 24}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d)/(2*d+1)); \\ Michel Marcus, Aug 07 2021

A346935 a(n) = Sum_{d|n} mu(n/d) * binomial(4*d,d) / (3*d+1).

Original entry on oeis.org

1, 3, 21, 136, 968, 7059, 53819, 420592, 3362238, 27342916, 225568797, 1882926144, 15875338989, 134993712777, 1156393242330, 9969937070688, 86445222719723, 753310719641286, 6594154339031799, 57956002304003096, 511238042454487704, 4524678117713613419, 40166643855158315819
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A002293.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[4 d, d]/(3 d + 1), {d, Divisors[n]}], {n, 23}]

A346936 a(n) = Sum_{d|n} mu(n/d) * binomial(5*d,d) / (4*d+1).

Original entry on oeis.org

1, 4, 34, 280, 2529, 23712, 231879, 2330160, 23950320, 250540836, 2658968129, 28558319744, 309831575759, 3390416555996, 37377257156716, 414741861215840, 4628362722856424, 51912988232308104, 584909606696793884, 6617078646710069720, 75134301594081157746, 855968478539048248916
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A002294.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[5 d, d]/(4 d + 1), {d, Divisors[n]}], {n, 22}]

A346937 a(n) = Sum_{d|n} mu(n/d) * binomial(6*d,d) / (5*d+1).

Original entry on oeis.org

1, 5, 50, 500, 5480, 62776, 749397, 9203128, 115607259, 1478308780, 19180049927, 251857056364, 3340843549854, 44700484300317, 602574657421585, 8175951649914160, 111572030260242089, 1530312970224714489, 21085148778264281864, 291705220703240850760, 4050527291832419432577
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A002295.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[6 d, d]/(5 d + 1), {d, Divisors[n]}], {n, 21}]

A346938 a(n) = Sum_{d|n} mu(n/d) * binomial(7*d,d) / (6*d+1).

Original entry on oeis.org

1, 6, 69, 812, 10471, 141702, 1997687, 28988856, 430321563, 6503342378, 99726673129, 1547847703500, 24269405074739, 383846166714410, 6116574500850339, 98106248277869040, 1582638261961640246, 25661404527359789034, 417980115131315136399, 6836064539918615002932
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A002296.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[7 d, d]/(6 d + 1), {d, Divisors[n]}], {n, 20}]

A346939 a(n) = Sum_{d|n} mu(n/d) * binomial(8*d,d) / (7*d+1).

Original entry on oeis.org

1, 7, 91, 1232, 18277, 285285, 4638347, 77650784, 1329890613, 23190011435, 410333440535, 7349042707872, 132969010888279, 2426870701777445, 44627576949345735, 826044435331747776, 15378186970730687399, 287756293702214647875, 5409093674555090316299, 102094541350713952736608
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A007556.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[8 d, d]/(7 d + 1), {d, Divisors[n]}], {n, 20}]

A172354 n such that the Moebius function take successively, from n, the values -1,0,-1,0,-1,0.

Original entry on oeis.org

195, 1491, 1547, 1947, 2139, 2715, 2749, 2751, 2847, 2967, 3359, 3615, 3819, 4011, 4013, 4015, 4047, 4155, 4547, 5019, 5449, 5647, 5741, 5779, 6351, 6353, 6355, 6447, 6547, 6563, 6565, 6567, 6947, 6959, 6961, 6963, 7347, 7503, 7545, 7683, 8007, 9339, 10091
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2010

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 826.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 262 and 287.

Crossrefs

Moebius (or Möbius) function mu(n): A008683, A007423, A002321, A002996.

Programs

  • Maple
    with(numtheory): for n from 1 to 15000 do;if mobius(n)= -1 and mobius(n+1) = 0 and mobius(n+2)= -1 and mobius(n+3)= 0 and mobius(n+4)= -1 and mobius(n+5) = 0 then print(n); else fi ; od;
  • Mathematica
    SequencePosition[MoebiusMu[Range[11000]],{-1,0,-1,0,-1,0}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 17 2016 *)
  • PARI
    is(n)=moebius(n)<0 && !moebius(n+1) && moebius(n+2)<0 && !moebius(n+3) && moebius(n+4)<0 && !moebius(n+5) \\ Charles R Greathouse IV, Sep 26 2013

Extensions

a(4) inserted by Charles R Greathouse IV, Sep 26 2013

A130513 Subtriangle of triangle in A051168: remove central column of A051168 and all columns to the right; now read by upwards diagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 2, 1, 0, 14, 7, 3, 1, 0, 42, 20, 9, 3, 1, 0, 132, 66, 30, 12, 4, 1, 0, 429, 212, 99, 40, 15, 4, 1, 0, 1430, 715, 333, 143, 55, 18, 5, 1, 0, 4862, 2424, 1144, 497, 200, 70, 22, 5, 1, 0, 16796, 8398, 3978, 1768, 728, 273, 91, 26, 6, 1, 0, 58786, 29372, 13995
Offset: 1

Views

Author

Philippe Deléham, Aug 08 2007

Keywords

Examples

			Triangle T(n,k), 1<=k<=n, begins:
1;
1, 0;
2, 1, 0;
5, 2, 1, 0;
14, 7, 3, 1, 0;
42, 20, 9, 3, 1, 0;
132, 66, 30, 12, 4, 1, 0;
429, 212, 99, 40, 15, 4, 1, 0;
		

References

  • A. Errera, Analysis situs: Un problème d'énumération, Memoires Acad. Bruxelles (1931), Serie 2, Vol. 11, No. 6, 26pp.

Crossrefs

Programs

  • Mathematica
    Table[1/(2n-k) Plus@@ (MoebiusMu[ # ]Binomial[(2n-k)/#,(n-k)/# ]&/@ Divisors[GCD[2n-k,n-k]]),{n,12},{k,n}] (* Wouter Meeussen, Jul 20 2008 *)

Formula

Sum_{k, 1<=k<=n} T(n,k) = A022553(n); Sum_{k, 1<=k<=n}k*T(n,k) = A002996(n).
T(n,k) = 1/(2n-k) Sum( d | gcd(2n-k,n-k) = mu(d) C((2n-k)/d,(n-k)/d) ). - Wouter Meeussen, Jul 20 2008

Extensions

Edited by N. J. A. Sloane, Oct 08 2007

A286310 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - ...))))).

Original entry on oeis.org

1, 2, 14, 102, 944, 10378, 135134, 2026920, 34459410, 654728128, 13749310574, 316234132728, 7905853580624, 213458046541738, 6190283353628416, 191898783960483600, 6332659870762850624, 221643095476665302070, 8200794532637891559374, 319830986772877116086448
Offset: 1

Views

Author

Ilya Gutkovskiy, May 06 2017

Keywords

Examples

			G.f.: 1 + x/(1 - x) + 2*x^2/(1 - x^2) + 14*x^3/(1 - x^3) + 102*x^4/(1 - x^4) + ... = 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - ...))))).
		

Crossrefs

Programs

  • Mathematica
    nn = 20; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-n x, 1, {n, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    a[n_] := Sum[MoebiusMu[n/d] (2 d - 1)!!, {d, Divisors[n]}]; Array[a, 20]

Formula

Sum_{d|n} a(d) = A001147(n) for n > 0.
a(n) ~ 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Sep 16 2021
Showing 1-10 of 10 results.