cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003082 Number of multigraphs with 4 nodes and n edges.

Original entry on oeis.org

1, 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313, 420, 562, 738, 956, 1221, 1550, 1936, 2405, 2958, 3609, 4368, 5260, 6279, 7462, 8814, 10356, 12104, 14093, 16320, 18834, 21645, 24783, 28272, 32158, 36442, 41187, 46410, 52151, 58443, 65345, 72864
Offset: 0

Views

Author

Keywords

Comments

Also, expansion of Molien series for representation Sym^2(R^n) of the automorphism group of the lattice D_3.

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 650.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.19).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001399, A014395 (5 nodes), A014396, A014397, A014398, row 4 of A192517.
Cf. A290778 (connected).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) )); // G. C. Greubel, Nov 04 2022
    
  • Mathematica
    CoefficientList[Series[PairGroupIndex[SymmetricGroup[4], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, 4}], {x, 0, 40}], x] (* Geoffrey Critzer, Nov 10 2011 *)
    LinearRecurrence[{2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1},{1,1,3,6,11,18,32,48,75,111, 160,224,313,420},50] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    Vec((x^8-x^7+x^6+x^4+x^2-x+1)/((x-1)^6*(x+1)^2*(x^2+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 02 2015
    
  • SageMath
    def A003082_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) ).list()
    A003082_list(50) # G. C. Greubel, Nov 04 2022

Formula

G.f.: (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2).
a(n) = 2*a(n-1) - 2*a(n-4) - 2*a(n-5) + 3*a(n-6) + 3*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-13) - a(n-14). - Wesley Ivan Hurt, Apr 20 2021
a(n) = (1/17280)*((3 + n)*(3175 + 2088*n + 564*n^2 + 72*n^3 + 6*n^4 + 945*(-1)^n) + 540*I^n*(1 + (-1)^n)) + (1/27)*(3*ChebyshevU(n, -1/2) + 2*ChebyshevU(n-1, -1/2) + 3*(-1)^n*(A099254(n) - A099254(n-1))). - G. C. Greubel, Nov 04 2022

Extensions

Entry improved by comments from Vladeta Jovovic, Dec 23 1999