cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003099 a(n) = Sum_{k=0..n} binomial(n,k^2).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 22, 43, 79, 137, 231, 397, 728, 1444, 3018, 6386, 13278, 26725, 51852, 97243, 177671, 320286, 579371, 1071226, 2053626, 4098627, 8451288, 17742649, 37352435, 77926452, 159899767, 321468048, 632531039, 1219295320, 2308910353, 4314168202
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A103198.

Programs

  • Magma
    [(&+[Binomial(n, j^2): j in [0..n]]): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n, k^2], {k, 0, Sqrt[n]}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *)
  • PARI
    a(n)=sum(k=0,sqrtint(n),binomial(n,k^2)) \\ Charles R Greathouse IV, Mar 26 2013
    
  • SageMath
    def A003099(n): return sum( binomial(n,k^2) for k in range(isqrt(n)+1))
    [A003099(n) for n in range(50)] # G. C. Greubel, Oct 26 2022

Formula

a(n)*sqrt(n)/2^n is bounded: lim sup a(n)*sqrt(n)/2^n = 0.82... and lim inf a(n)*sqrt(n)/2^n = 0.58... - Benoit Cloitre, Nov 14 2003 [These constants are sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = 0.827112271364145742... and sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = 0.587247586271786487... - Vaclav Kotesovec, Jan 15 2023]
Binomial transform of the characteristic function of squares A010052. - Carl Najafi, Sep 09 2011
G.f.: (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^(k^2). - Ilya Gutkovskiy, Jan 22 2024

Extensions

More terms from Carl Najafi, Sep 09 2011