A003106 Number of partitions of n into parts 5k+2 or 5k+3.
1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20, 22, 26, 29, 35, 38, 45, 50, 58, 64, 75, 82, 95, 105, 120, 133, 152, 167, 190, 210, 237, 261, 295, 324, 364, 401, 448, 493, 551, 604, 673, 739, 820, 899, 997, 1091, 1207, 1321, 1457, 1593, 1756, 1916, 2108, 2301
Offset: 0
Examples
G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + ... G.f. = q^11 + q^131 + q^191 + q^251 + q^311 + 2*q^371 + 2*q^431 + 3*q^491 + 3*q^551 + ... From _Joerg Arndt_, Dec 27 2012: (Start) The a(18)=15: the partitions of 18 where all parts are 2 or 3 (mod 5) are [ 1] [ 2 2 2 2 2 2 2 2 2 ] [ 2] [ 3 3 2 2 2 2 2 2 ] [ 3] [ 3 3 3 3 2 2 2 ] [ 4] [ 3 3 3 3 3 3 ] [ 5] [ 7 3 2 2 2 2 ] [ 6] [ 7 3 3 3 2 ] [ 7] [ 7 7 2 2 ] [ 8] [ 8 2 2 2 2 2 ] [ 9] [ 8 3 3 2 2 ] [10] [ 8 7 3 ] [11] [ 8 8 2 ] [12] [ 12 2 2 2 ] [13] [ 12 3 3 ] [14] [ 13 3 2 ] [15] [ 18 ] (End) From _Wolfdieter Lang_, Oct 29 2016: (Start) The a(18)=15 partitions of 18 without part 1 and parts differing by at least 2 are: [18]; [16,2], [15,3], [14,4], [13,5], [12,6], [11,7], [10,8]; [12,4,2], [11,5,2], [10,6,2], [9,7,2],[10,5,3], [9,6,3], [8,6,4]. The semicolon separates different number of parts. The maximal number of parts is A259361(18) = 3. (End)
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 238.
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(f), p. 591.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 108.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 290-291.
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- G. E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- George E. Andrews; R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- P. Jacob and P. Mathieu, Parafermionic derivation of Andrews-type multiple-sums, arXiv:hep-th/0505097, 2005.
- James Lepowsky and Minxian Zhu, A motivated proof of Gordon's identities, arXiv:1205.6570 [math.CO], 2012; The Ramanujan Journal 29.1-3 (2012): 199-211.
- I. Martinjak, D. Svrtan, New Identities for the Polarized Partitions and Partitions with d-Distant Parts, J. Int. Seq. 17 (2014) # 14.11.4.
- Herman P. Robinson, Letter to N. J. A. Sloane, Jan 1974.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
Crossrefs
Programs
-
Haskell
a003106 = p a047221_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 30 2012
-
Maple
g:=1/product((1-x^(5*j-2))*(1-x^(5*j-3)),j=1..15): gser:=series(g,x=0,66): seq(coeff(gser,x,n),n=0..63); # Emeric Deutsch, Apr 09 2006
-
Mathematica
max = 63; g[x_] := 1/Product[(1-x^(5j-2))*(1-x^(5j-3)), {j, 1, Floor[max/4]}]; CoefficientList[ Series[g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after Emeric Deutsch *) Table[Count[IntegerPartitions[n], p_ /; Min[p] > Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5]), {x, 0, n}]; (* Michael Somos, May 06 2015 *) a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{0, -1, -1, 0, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *) nmax = 63; kmax = nmax/5; s = Flatten[{Range[0, kmax]*5 + 2}~Join~{Range[0, kmax]*5 + 3}]; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
-
PARI
{a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, (sqrtint(4*n + 1) - 1) \ 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1), n))}; /* Michael Somos, Oct 15 2008 */
Formula
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n*(n+1))/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-2))*(1-t^(5*n-3))); this is the g.f. for the sequence.
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2 + 2*k) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 0, 1, 1, 0, 0, ...]. - Michael Somos, Oct 15 2008
From Joerg Arndt, Oct 10 2012: (Start)
Bill Gosper gives (message to the math-fun mailing list, Oct 07 2012)
prod(k>=0, [0 , a; q^k, 1]) = [0, X(a,q); 0, Y(a,q)] where
X(a,q) = a * sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^n) ) and
Y(a,q) = sum(n>=0, a^n*q^(n^2-n) / prod(k=1..n, 1-q^n) ).
Set a=q to obtain prod(k>=0, [0 , a; q^k, 1]) = [0, q*H(q); 0, G(q)] where
Bill Gosper and N. J. A. Sloane give (message to math-fun, Oct 10 2012)
prod(k>=0, [0 , a*q^k; 1, 1]) = [U(a,q), U(a,q); V(a,q), V(a,q)] where
U(a,q) = a * sum(n>=0, a^n*q^(n^2+n) / prod(k=1..n, 1-q^k) ) and
V(a,q) = sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^k) ).
Set a=1 to obtain prod(k>=0, [0 , q^k; 1, 1]) = [H(q), H(q); G(q), G(q)].
(End)
Expansion of f(-x^5) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, May 06 2015
Expansion of f(-x, -x^4) / f(-x) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ sqrt((sqrt(5)-1)/5) * exp(2*Pi*sqrt(n/15)) / (2^(3/2) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(60*sqrt(15)) - 3*sqrt(15)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 24 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284152(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
Comments