cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A264591 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[4](q).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 20, 22, 26, 28, 33, 36, 42, 46, 53, 58, 67, 73, 83, 91, 104, 113, 128, 140, 158, 173, 194, 212, 238, 260, 290, 317, 353, 385, 428, 467, 517, 564
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2015

Keywords

Comments

It is conjectured that G[i](q) = 1 + O(q^i) for all i.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[4](x). - N. J. A. Sloane, Nov 22 2015
From Wolfdieter Lang, Nov 02 2016: (Start)
The second g.f. given below leads to a combinatorial partition interpretation from (2 + 4 + ... + 2*m) + 2*m = m*(m+3). Take for the sum term m the special M=m+1 part partition [2m,2m,2*(m-1),...,4,2] together with arbitrary partitions of N with part number m' <= M-1 = m added to the first m' parts.
Summing over m>=1 leads to partitions of n = m*(m+3) + N which have no part 1, only one part 2 except for n=4 and for number of parts M >= 3 the difference of parts except of the first two parts has to be at least 2. See the examples below.
A simpler interpretation uses m*(m+3) = 4 + 6 + ... + 2*(m+1), leading to a(n) as the number of partitions of n with parts >= 4 and parts differing by at least 2.
This is in the spirit of MacMahon's and Schur's interpretation of the sum version of the Rogers-Ramanujan identities. See the Hardy and Hardy-Wright references under A003114. (End)

Examples

			From _Wolfdieter Lang_, Nov 02 2016: (Start)
a(0) = 1 from the n=0 sum term (undefined product put to 1),
a(n) = 1 for n=4..9 from the partition [n-2,2],
a(10) = 2 from [8,2] and [4,4,2],
a(11) = 2 from [9,2] and [5,4,2],
a(12) = 3 from [10,2], [6,4,2], [5,5,2],
a(18) = 7 from [16,2], all 1+4=5 partitions of 18-10 = 8 with part number <= 2 added to the first two part of [4,4,2] and the new four part partition [6,6,4,2].
The maximal number of parts needed for n is floor((-1+sqrt(9+4*n))/2) = A259361(n+2).
A simpler interpretation:
a(18) = 7 from the partitions of 18 with parts >=4 and parts differing by at least 2: [18], [14,4], [13,5], [12,6], [11,7], [10,8], [8,6,4].
The maximal number of parts needed for n is floor((-3+sqrt(9+4*n))/2).
(End)
		

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+3))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)

Formula

From Wolfdieter Lang, Nov 02 2016: (Start)
G.f.: G[4](q) = (Sum_{n >= 0} (-1)^n*(1 - q^(n+1))*(1 - q^(n+2))*(1 - q^(2*n+3))*q^((5*n+11)*n/2)) / (Product_{j >= 1} (1 - q^j)), from the Andrews-Baxter (AB) reference, eq. (3.7).
G.f.: Sum_{m >= 0} q^(m*(m+3)) / Product_{j=1..m} (1-q^j) from (AB) eq. 51.
This can also be derived from the Hardy (H) or Hardy-Wright reference (see A006141): Put G_4(a,q):= (H_1(a,q) - H_1(a*q,q)) / (a*q) with H_1(a,x) from (H) p. 95, first eq. Then G[4](q) = G_4(q,q). (End)
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(5/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016

A264592 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[5](q).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 25, 29, 32, 36, 40, 46, 50, 57, 63, 71, 78, 88, 96, 108, 119, 132, 145, 162, 177, 197, 216, 239, 262, 290, 317, 350, 383, 421, 460, 507, 552, 606, 661, 724, 789, 864, 939, 1027, 1117
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2015

Keywords

Comments

It is conjectured that G[i](q) = 1 + O(q^i) for all i.
From Wolfdieter Lang, Nov 03 2016: (Start)
The generalized Rogers-Ramanujan [R-R] series G[i](q) of Andrews and Baxter [A-B] have a standard combinatorial interpretation of the Schur and MacMahon type (see Hardy [H] and Hardy-Wright [H-W] for the original [R-R] case) inferred from the formula G[i](q) = Sum_{m>=0} q^(m*(m+i-1))/Product_{j=1..m} (1 - q^j) ([A-B], eq. (5.1)). Define GI_k(q) = G[2*k+1](q) and GII_k(q) = G[2*k](q), for k = 0, 1,..., and prove the two formulas I(m,k): m*(m+2*k) = Sum_{j = 1..2*m-1} (2*k + j), and II(m,k): m*(m+2*k+1) = Sum_{j = 1..m} (2*(k + j)) for fixed positive m by induction over k = 0, 1, ... . For GI_k(q) define the special m-part partition SPI(m,k) = [2*k+2*m-1,2*k+2*m-3,...,2*k+1] of m*(m+2*k), and for GII_k(q) the special m-part partition SPII(m,k) [2*(k+1),2*(k+2),...,2*(k+1))] of m*(m+2*k+1).
Then GI_k(q) = 1 + Sum_{n >=1} aI(k,n)*q^n with aI(k,n) the number of partitions of n without parts 1, 2, ..., 2*k, and the parts differ by at least 2. GII_k(q) = 1 + Sum_{n >=1} aII(k,n)*q^n with aII(k,n) the number of partitions of n without parts 1, 2, ..., 2*k+1, and the parts differ by at least 2. The proof can be directly adapted from the one given in [H] or [H-W] for k=1.
For the partitions of n generated by GI_k(q) one needs the maximal part number MmaxI(k,n) = floor(-k + sqrt(k^2 + n)). For the GII_k(q) case MmaxII(k,n) = floor(-(2*k+1) + sqrt((2*k+1)^2 + 4*n)).
The present sequence is aI(2,n), in [A-B] notation generated by G[5](q), giving the number of partitions of n without parts 1, 2, 3 and 4, and the parts differ by at least 2.
(End)

Examples

			From _Wolfdieter Lang_, Nov 03 2016: (Start)
a(5) = 1 because the only partition of n = 5 without parts 1, 2, 3 and 4, and parts differing by at least 2 is [5].
a(12) = 2 from the two partitions [12] and [7,5] of n = 12.
a(18) = 5 from the five partitions [18], [13,5], [12,6], [11,7], [10,8] of n = 18.
(End)
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 91-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.

Crossrefs

For the generalized Rogers-Ramanujan series G[0], G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003113, A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+4))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)

Formula

From Wolfdieter Lang, Nov 03 2016: (Start)
G.f.: G[5](q) = GI_2(q) = Sum_{m>=0} q^(m*(m+4))/Product_{j=1..m} (1 - q^j).
See [A-B], eq. (5.1) for i=5.
a(0) = 1 and a(n) gives the number of partitions of n without part 1 and 2, the parts differing by at least 2.
G.f.: Sum_{m=0} ((-1)^m*(1 - q^(m+1))*(1 - q^(m+2))*(1 - q^(m+3))*(1 - q^(2*(m+2))) * q^(5*(n+3)*n/2)) / Product_{j>=1} (1 - q^j). See [A-B], eq. (3.8) for i=5. (End)
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(7/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016

A264593 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[6](q).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 26, 28, 33, 35, 40, 44, 50, 54, 62, 67, 76, 83, 93, 101, 114, 123, 138, 150, 167, 181, 202, 219, 243, 264, 292, 317, 351, 380, 419, 455, 500, 542, 596, 645, 707, 766, 838, 907, 992, 1072
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2015

Keywords

Comments

It is conjectured that G[i](q) = 1 + O(q^i) for all i.
For n >=1 a(n) gives the number of partitions of n without parts 1, 2, 3, 4, and 5, and the parts differ by at least 2. For the proof see a comment given in A264592. - Wolfdieter Lang, Nov 10 2016

Examples

			a(18) = 4 because the four partitions of 18 without parts 1, 2, 3, 4 and 5, and the parts differ by at least 2 are [18], [12, 6], [11, 7], [10, 8]. - _Wolfdieter Lang_, Nov 10 2016
		

Crossrefs

For the generalized Rogers-Ramanujan series G[0], G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003113, A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+5))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)

Formula

From Wolfdieter Lang, Nov 10 2016: (Start)
G.f.: G[6](q) = GII_2(q) = Sum_{m>=0} q^(m*(m+5)) / Product_{j =1..m} (1 - q^j).
See Andrews and Baxter [A-B], eq. (5.1) for i=6.
G.f.: Sum_{m=0} ((-1)^m*(1 - q^(m+1))*(1 - q^(m+2))*(1 - q^(m+3))*(1 - q^(m+4))*(1 - q^(2*m+5))*q^((5*m+19)*m/2)) / Product_{j>=1} (1 - q^j). See [A-B] eq. (3.8) for i=6. (End)
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(9/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016

A264594 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[7](q).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 24, 26, 29, 32, 36, 39, 44, 48, 54, 59, 66, 72, 81, 88, 98, 107, 119, 129, 143, 156, 172, 187, 206, 224, 247, 268, 294, 320, 351, 381, 417, 453, 495, 537, 586, 635, 693, 750, 816
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2015

Keywords

Comments

It is conjectured that G[i](q) = 1 + O(q^i) for all i.

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+6))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)

Formula

a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(11/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016

A264595 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[8](q).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 9, 9, 11, 12, 14, 15, 18, 19, 22, 24, 27, 29, 33, 35, 40, 43, 48, 52, 59, 63, 71, 77, 86, 93, 104, 112, 125, 135, 149, 161, 179, 192, 212, 229, 252, 272, 299, 322, 354, 382, 418, 451, 494, 532, 581, 627, 683
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2015

Keywords

Comments

It is conjectured that G[i](q) = 1 + O(q^i) for all i.

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+7))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)

Formula

a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(13/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016

A327691 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003106.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 3, 8, 7, 13, 11, 26, 20, 40, 39, 66, 61, 111, 102, 171, 174, 266, 269, 427, 423, 638, 675, 969, 1016, 1477, 1544, 2177, 2350, 3209, 3466, 4754, 5112, 6867, 7546, 9931, 10899, 14343, 15729, 20406, 22653, 28962, 32168, 41069, 45561, 57551, 64382, 80491, 90030, 112286
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)

Formula

G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).

A145468 Convolution square of A003106.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 8, 13, 16, 23, 28, 40, 48, 66, 82, 107, 132, 171, 208, 266, 324, 406, 494, 614, 740, 912, 1098, 1338, 1604, 1945, 2318, 2793, 3320, 3972, 4706, 5605, 6612, 7840, 9222, 10882, 12760, 15004, 17534, 20542, 23944, 27949, 32490, 37813, 43832
Offset: 0

Views

Author

Michael Somos, Oct 11 2008

Keywords

Examples

			q^11 + 2*q^71 + 2*q^101 + 3*q^131 + 4*q^161 + 7*q^191 + 8*q^221 + ...
		

Crossrefs

-A145466(5*n+2) = a(n).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 2))*(1 - x^(5*k - 3)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k= 1,(sqrt(4*n + 1) - 1) / 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1)^2, n))}

Formula

Expansion of H(x)^2 in powers of x where H() is a Rogers-Ramanujan function.
Euler transform of period 5 sequence [ 0, 2, 2, 0, 0, ...].
G.f.: (1 + Sum_{k>0} x^(k^2 - k) / ((1 - t) * (1 - t^2) * ... * (1 - t^k)))^2 = (Product_{k>0} (1 - x^(5*k - 2)) * (1 - x^(5*k -3)))^-2.
a(n) ~ (sqrt(5)-1) * exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 3^(1/4) * 5^(3/4) * n^(3/4)) * (1 + (11*Pi/(15*sqrt(30)) - 3*sqrt(15/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 14 2018

A217569 Expansion of H(q)*G(q^11) where H and G are respectively the g.f. of A003106 and A003114 (Rogers-Ramanujan functions).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 42, 47, 55, 62, 72, 81, 94, 105, 121, 136, 155, 175, 199, 222, 252, 282, 318, 355, 400, 445, 501, 556, 624, 693, 774, 857, 957, 1059, 1178, 1302, 1446, 1596, 1769, 1951, 2158, 2376, 2624, 2885, 3182, 3495, 3847, 4221, 4642
Offset: 0

Views

Author

Joerg Arndt, Oct 07 2012

Keywords

Comments

Also the expansion of 1+q^2*H(q^11)*G(q); that is, H(q)*G(q^11) - q^2*G(q)*H(q^11) = 1, we also have H(q)*G(q)^11 - q^2*G(q)*H(q)^11 = 1 + 11*q*(G(q)*H(q))^6, see the Ramanujan reference.
Number of partitions of n into parts t such that t mod 55 is in {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53}.
With E(q) = Product_{n>=1} (1-q^n) we have G(q)*H(q) - E(q^5)/E(q), G(q) = ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) ), and H(q) = ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) ), see the Berkovich/Yesilyurt reference.

Crossrefs

Cf. A003106 and A003114 (Rogers-Ramanujan functions H and G).
Cf. A121591 (expansion of q*(G(q)*H(q))^6).

Programs

  • PARI
    N=66; q='q+O('q^N );
    S=2+2*ceil(sqrt(N));
    G(q)=sum(n=0,S,q^(n^2)/prod(k=1,n,1-q^k)); /* g.f. of  A003114 */
    H(q)=sum(n=0,S,q^(n^2+n)/prod(k=1,n,1-q^k)); /* g.f. of A003106 */
    Vec(H(q)*G(q^11)) /* show terms */
    /* checking the modular equations, all expressions are zero:
    ( H(q)*G(q)^11 - q^2*G(q)*H(q)^11 ) - ( 1 + 11*q*(G(q)*H(q))^6 )
    ( H(q)*G(q^11) - q^2*G(q)*H(q^11) ) - ( 1 )
    E(q)=prod(n=1,N, 1-q^n);
    G(q)*H(q) - E(q^5)/E(q)
    G(q) - ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) )
    H(q) - ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) )
    */
    
  • PARI
    N=66; q='q+O('q^N );
    E=[2,3,7,8,11,12,13,17,18,22,23,27,28,32,33,37,38,42,43,44,47,48,52,53];
    Vec( 1 / prod(K=0, N\55+1,  prod(k=1,24, 1 - q^(K*55+E[k]) ) ) )

Formula

G.f.: H(q)*G(q^11) where G(q) = Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^k) and H(q) = Sum_{n>=0} q^(n^2+n)/Product_{k=1..n} (1-q^k).
G.f.: 1 / Product_{k>=0} (1 - q^k) where k (mod 55) is restricted to the set {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53} (the set has 24 elements).

A003114 Number of partitions of n into parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
  [ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 2]  [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 3]  [ 4 4 1 1 1 1 1 1 1 1 ]
  [ 4]  [ 4 4 4 1 1 1 1 ]
  [ 5]  [ 4 4 4 4 ]
  [ 6]  [ 6 1 1 1 1 1 1 1 1 1 1 ]
  [ 7]  [ 6 4 1 1 1 1 1 1 ]
  [ 8]  [ 6 4 4 1 1 ]
  [ 9]  [ 6 6 1 1 1 1 ]
  [10]  [ 6 6 4 ]
  [11]  [ 9 1 1 1 1 1 1 1 ]
  [12]  [ 9 4 1 1 1 ]
  [13]  [ 9 6 1 ]
  [14]  [ 11 1 1 1 1 1 ]
  [15]  [ 11 4 1 ]
  [16]  [ 14 1 1 ]
  [17]  [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
  [ 1]  [ 7 5 3 1 ]
  [ 2]  [ 8 5 3 ]
  [ 3]  [ 8 6 2 ]
  [ 4]  [ 9 5 2 ]
  [ 5]  [ 9 6 1 ]
  [ 6]  [ 9 7 ]
  [ 7]  [ 10 4 2 ]
  [ 8]  [ 10 5 1 ]
  [ 9]  [ 10 6 ]
  [10]  [ 11 4 1 ]
  [11]  [ 11 5 ]
  [12]  [ 12 3 1 ]
  [13]  [ 12 4 ]
  [14]  [ 13 3 ]
  [15]  [ 14 2 ]
  [16]  [ 15 1 ]
  [17]  [ 16 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.

Programs

  • Haskell
    a003114 = p a047209_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 05 2011
    
  • Haskell
    a003114 = p 1 where
       p _ 0 = 1
       p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
  • Mathematica
    CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 60; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A006141 Number of integer partitions of n whose smallest part is equal to the number of parts.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 25, 29, 33, 38, 42, 49, 54, 62, 69, 78, 87, 99, 109, 123, 137, 154, 170, 191, 211, 236, 261, 290, 320, 357, 392, 435, 479, 530, 582, 644, 706, 779, 854, 940, 1029, 1133, 1237, 1358, 1485
Offset: 1

Views

Author

Keywords

Comments

Or, number of partitions of n in which number of largest parts is equal to the largest part.
a(n) is the number of partitions of n-1 without parts that differ by less than 2 and which have no parts less than three. [MacMahon]
There are two conflicting choices for the offset in this sequence. For the definition given here the offset is 1, and that is what we shall adopt. On the other hand, if one arrives at this sequence via the Rogers-Ramanujan identities (see the next comment), the natural offset is 0.
Related to Rogers-Ramanujan identities: Let G[1](q) and G[2](q) be the generating functions for the two Rogers-Ramanujan identities of A003114 and A003106, starting with the constant term 1. The g.f. for the present sequence is G[3](q) = (G[1](q) - G[2](q))/q = 1+q^3+q^4+q^5+q^6+q^7+2*q^8+2*q^9+3*q^10+.... - Joerg Arndt, Oct 08 2012; N. J. A. Sloane, Nov 18 2015
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[3](x). - N. J. A. Sloane, Nov 22 2015
From Wolfdieter Lang, Oct 31 2016: (Start)
From Hardy (H) p. 94, eq. (6.12.1) and Hardy-Wright (H-W), p. 293, eq. (19.14.3) for H_2(a,x) - H_1(a,x) = a*H_1(a*x,x) one finds from the result for H_1(a,x) (in (H) on top on p. 95), after putting a=x, the o.g.f. of a(n) = A003114(n) - A003106(n), n >= 0, with a(0) = 0 as Sum_{m>=0} x^((m+1)^2) / Product_{j=1..m} (1 - x^j). The m=0 term is 1*x^1. See the formula given by Joerg Arndt, Jan 29 2011.
This formula has a combinatorial interpretation (found similar to the one given in (H) section 6.0, pp. 91-92 or (H-W) pp. 290-291): a(n) is the number of partitions of n with parts differing by at least 2 and part 1 present. See the example for a(15) below. (End)
The Heinz numbers of these integer partitions are given by A324522. - Gus Wiseman, Mar 09 2019

Examples

			G.f. = x + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 3*x^12 + ...
a(15) = 5 because the partitions of 15 where the smallest part equals the number of parts are
3 + 6 + 6,
3 + 5 + 7,
3 + 4 + 8,
3 + 3 + 9, and
2 + 13.
- _Joerg Arndt_, Oct 08 2012
a(15) = 5 because the partitions of 15 with parts differing by at least 2 and part 1 present are: [14,1] obtained from the partition of 11 with one part, [11], added to the first part of the special partition [3,1] of 4 and  [11,3,1], [10,4,1], [9,5,1], [8,6,1] from adding all partition of 15 - 9 = 6 with one part, [6], and those with two parts, [5,1], [4,1], [3,3], to the special partition [5,3,1] of 9. - _Wolfdieter Lang_, Oct 31 2016
a(15) = 5 because the partitions of 14 with parts >= 3 and parts differing by at least 2 are [14], [11,3], [10,4], [9,5] and [8,6]. See the second [MacMahon] comment. This follows from the g.f. G[3](q) given in Andrews - Baxter, eq. (5.1) for i=3, (using summation index  m) and  m*(m+2) = 3 + 5 + ... + (2*m+1). - _Wolfdieter Lang_, Nov 02 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(8) = 1 through a(15) = 5 integer partitions:
  (6,2)  (7,2)    (8,2)    (9,2)    (10,2)   (11,2)   (12,2)   (13,2)
         (3,3,3)  (4,3,3)  (4,4,3)  (5,4,3)  (5,5,3)  (6,5,3)  (6,6,3)
                           (5,3,3)  (6,3,3)  (6,4,3)  (7,4,3)  (7,5,3)
                                             (7,3,3)  (8,3,3)  (8,4,3)
                                                               (9,3,3)
(End)
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 92-95.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 292-294.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 45, Section 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
A003106 counts partitions with minimum > length.
A003114 counts partitions with minimum >= length.
A026794 counts partitions by minimum.
A039899 counts partitions with minimum < length.
A039900 counts partitions with minimum <= length.
A239950 counts partitions with minimum equal to number of distinct parts.
Sequences related to balance:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 ranks balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i,i)))))
        end:
    a:= n-> add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 08 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n<0, 0, If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]]; a[n_] := Sum[b[n-j^2, j-1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Min[#]==Length[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(j=1, k-1, 1 - x^j, 1 + O(x ^ (n - k^2 + 1) ))), n))} /* Michael Somos, Jan 22 2008 */

Formula

G.f.: Sum_{m>=1} (x^(m^2)-x^(m*(m+1))) / Product_{i=1..m} (1-x^i) .
G.f.: Sum_{n>=1} x^(n^2)/Product_{k=1..n-1} (1-x^k). - Joerg Arndt, Jan 29 2011
a(n) = A003114(n) - A003106(n) = A039900(n) - A039899(n), (offset 1). - Vladeta Jovovic, Jul 17 2004
Plouffe in his 1992 dissertation conjectured that this has g.f. = (1+z+z^4+2*z^5-z^3-z^8+3*z^10-z^7+z^9)/(1+z-z^4-2*z^3-z^8+z^10), but Michael Somos pointed out on Jan 22 2008 that this is false.
Expansion of ( f(-x^2, -x^3) - f(-x, -x^4) ) / f(-x) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 22 2007
a(n) ~ sqrt(1/sqrt(5) - 2/5) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 01 2016

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
Better description from Naohiro Nomoto, Feb 06 2002
Name shortened by Gus Wiseman, Apr 07 2021 (balanced partitions are A047993).
Showing 1-10 of 99 results. Next