A003121 Strict sense ballot numbers: n candidates, k-th candidate gets k votes.
1, 1, 1, 2, 12, 286, 33592, 23178480, 108995910720, 3973186258569120, 1257987096462161167200, 3830793890438041335187545600, 123051391839834932169117010215648000, 45367448380314462649742951646437285434233600, 207515126854334868747300581954534054343817468395494400
Offset: 0
Examples
From _R. H. Hardin_, Jul 06 2012: (Start) The a(4) = 12 ways to fill a triangle with the numbers 0 through 9: . 5 6 6 5 3 7 3 7 2 7 2 7 1 4 8 1 4 8 1 4 8 1 4 8 0 2 6 9 0 2 5 9 0 3 5 9 0 3 6 9 . 5 3 3 4 3 6 2 6 2 7 3 7 1 4 8 1 5 8 1 5 8 1 5 8 0 2 7 9 0 4 7 9 0 4 6 9 0 2 6 9 . 4 4 5 4 2 6 2 7 2 6 3 6 1 5 8 1 5 8 1 4 8 1 5 8 0 3 7 9 0 3 6 9 0 3 7 9 0 2 7 9 . (End)
References
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..30
- E. Aas and S. Linusson, Continuous multiline queues and TASEP, 2014; also arxiv version, arXiv:1501.04417 [math.CO], 2015-2017.
- Joerg Arndt, The a(5)=286 Young tableaux of shape [1,2,3,4,5].
- D. E. Barton and C. L. Mallows, Some aspects of the random sequence, Ann. Math. Statist. 36 (1965) 236-260.
- Andrew Beveridge, Ian Calaway, and Kristin Heysse, de Finetti Lattices and Magog Triangles, arXiv:1912.12319 [math.CO], 2019.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, arXiv:1609.01782 [math.CO], 2016.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley flow polytopes, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #80.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley polytope: vertices and faces, arXiv:2307.09925 [math.CO], 2023.
- S. Fishel and L. Nelson, Chains of maximum length in the Tamari lattice, Proc. Amer. Math. Soc. 142 (2014), 3343-3353.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- C. Hohlweg, C. Lange, and H. Thomas, Permutahedra and generalized associahedra, arXiv:0709.4241 [math.CO], 2007-2008; Adv. Math. 226 (2011), no. 1, 608-640.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 30, 39.
- Colin Mallows, Letter to N. J. A. Sloane, date unknown.
- Svante Linusson and Samu Potka, New properties of the Edelman-Greene bijection, arXiv:1804.10034 [math.CO], 2018.
- N. Reading, Cambrian lattices, arXiv:math/0402086 [math.CO], 2004-2005; Adv. Math. 205 (2006), no. 2, 313-353.
- F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin. Theory, B 54 (1992), 77-101.
- B. Shapiro and M. Shapiro, A few riddles behind Rolle's theorem, arXiv:math/0302215 [math.CA], 2003-2005; Amer. Math. Monthly, 119 (2012), 787-795.
- George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
- R. M. Thrall, A combinatorial problem, Michigan Math. J. 1, (1952), 81-88.
- Dennis White, Sign-balanced posets, Journal of Combinatorial Theory, Series A, Volume 95, Issue 1, July 2001, Pages 1-38.
- Wikipedia, Tamari lattice
Crossrefs
Programs
-
Maple
f:= n-> ((n*n+n)/2)!*mul((i-1)!/(2*i-1)!, i=1..n); seq(f(n), n=0..20);
-
Mathematica
f[n_] := (n (n + 1)/2)! Product[(i - 1)!/(2 i - 1)!, {i, n}]; Array[f, 14, 0] (* Robert G. Wilson v, May 14 2013 *)
-
PARI
a(n)=((n*n+n)/2)!*prod(i=1,n,(i-1)!/(2*i-1)!)
Formula
a(n) = binomial(n+1, 2)!*(1!*2!*...*(n-1)!)/(1!*3!*...*(2n-1)!).
a(n) ~ sqrt(Pi) * exp(n^2/4 + n/2 + 7/24) * n^(n^2/2 + n/2 + 23/24) / (A^(1/2) * 2^(3*n^2/2 + n + 5/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
Extensions
More terms from Michael Somos
Additional references from Frank Ruskey
Formula corrected by Eric Rowland, Jun 18 2010
Comments