cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003161 A binomial coefficient sum.

Original entry on oeis.org

1, 1, 2, 9, 36, 190, 980, 5705, 33040, 204876, 1268568, 8209278, 53105976, 354331692, 2364239592, 16140234825, 110206067400, 765868074400, 5323547715200, 37525317999884, 264576141331216, 1886768082651816, 13458185494436592, 96906387191038334, 697931136204820336
Offset: 0

Views

Author

Keywords

Comments

The number of triples of standard tableaux of the same shape of height less than or equal to 2. - Mike Zabrocki, Mar 29 2007
From Peter Bala, Mar 20 2023: (Start)
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(3,n)}. For other cases see A361887 ({S(5,n)}) and A361890 ({S(7,n)}).
Gould (1974) proposed the problem of showing that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
Conjecture: Let b(n) = a(2*n-1). Then the supercongruence b(n*p^k) == b(n*p^(k-1)) (mod p^(3*k)) holds for positive integers n and k and all primes p >= 5. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A357824.

Programs

  • Maple
    ogf := ((8*x-1)*(8*x+1)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)-3*Int((16*x-5)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)^2,x)+1)/(16*x);
    series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    a(n)=sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3) /* Michael Somos, Jun 02 2005 */

Formula

a(n) = Sum_{k=0..n} A120730(n,k)^3. - Philippe Deléham, Oct 18 2008
G.f.: hypergeometric expression with an anti-derivative, see Maple program. - Mark van Hoeij, May 06 2013
Recurrence: n*(n+1)^3*(7*n^2 - 14*n + 3)*a(n) = - n*(7*n^5 - 112*n^4 + 206*n^3 + 8*n^2 - 125*n + 48)*a(n-1) + 16*(n-1)*(28*n^5 - 133*n^4 + 194*n^3 - 33*n^2 - 120*n + 61)*a(n-2) + 64*(n-2)^3*(n-1)*(7*n^2 - 4)*a(n-3). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 2^(3*n+9/2) / (9 * Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Mar 06 2014
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^3. - Alois P. Heinz, Oct 17 2022