A053121 Catalan triangle (with 0's) read by rows.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0
Examples
Triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 2 0 3 0 1 5: 0 5 0 4 0 1 6: 5 0 9 0 5 0 1 7: 0 14 0 14 0 6 0 1 8: 14 0 28 0 20 0 7 0 1 9: 0 42 0 48 0 27 0 8 0 1 10: 42 0 90 0 75 0 35 0 9 0 1 ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013) E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3. From _Paul Barry_, May 29 2009: (Start) Production matrix is 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End) Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
References
- J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- I. Bajunaid et al., Function series, Catalan numbers and random walks on trees, Amer. Math. Monthly 112 (2005), 765-785.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 3.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, example 3.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013.
- J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, 2013.
- J. Cigler, Some notes on q-Gould polynomials, 2013.
- Emeric Deutsch, A. Robertson and D. Saracino, Refined restricted involutions, European Journal of Combinatorics 28 (2007), 481-498 (see pp. 486 and 498).
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986 (see |F_{l,p}| on page 114). - _N. J. A. Sloane_, Jan 29 2011
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- Wolfdieter Lang, Chebyshev S-polynomials: ten applications.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Note 4, pp. 414-415.
- MathOverflow, Catalan numbers as sums of squares of numbers in the rows of the Catalan triangle - is there a combinatorial explanation?
- A. Nkwanta and A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- Karim Ritter von Merkl, Computing colored Khovanov homology, arXiv:2505.03916 [math.QA], 2025. See p. 2.
- Frank Ruskey and Mark Weston, Spherical Venn Diagrams with Involutory Isometries, Electronic Journal of Combinatorics, 18 (2011), #P191.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014).
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes.
- W.-J. Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Haskell
a053121 n k = a053121_tabl !! n !! k a053121_row n = a053121_tabl !! n a053121_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1] -- Reinhard Zumkeller, Feb 24 2012
-
Maple
T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006 F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end; r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011 A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1, procname(n-1,k-1)+procname(n-1,k+1))) end proc: seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
-
Mathematica
a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *) T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
-
PARI
T(n, m)=if(n
Charles R Greathouse IV, Mar 09 2016 -
Sage
def A053121_triangle(dim): M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1] + M[n-1,k+1] return M A053121_triangle(13) # Peter Luschny, Sep 19 2012
Formula
a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021
Extensions
Edited by N. J. A. Sloane, Jan 29 2011
A120730 Another version of Catalan triangle A009766.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0
Comments
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011
Examples
As a triangle, this begins: 1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 2, 3, 1; 0, 0, 0, 5, 4, 1; 0, 0, 0, 5, 9, 5, 1; 0, 0, 0, 0, 14, 14, 6, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Magma
A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >; [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
-
Maple
G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Jun 19 2011 # second Maple program: b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: T:= (n, k)-> b(n, 2*k-n): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Oct 13 2022
-
Mathematica
b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]]; T[n_, k_] := b[n, 2 k - n]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *) T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)]; Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022
Formula
G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)
A129123 Number of 4-tuples of standard tableau with height less than or equal to 2.
1, 1, 2, 17, 98, 882, 7812, 78129, 815474, 8955650, 101869508, 1194964498, 14374530436, 176681194276, 2212121332488, 28145258688369, 363177582488274, 4745064935840178, 62687665026816228, 836447728509168930, 11261240896657686660, 152847558411986548260
Offset: 0
Keywords
Comments
Number of pairs of Dyck paths of semilength n with equal midpoint. - Alois P. Heinz, Oct 07 2022
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..839
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
Programs
-
Magma
[(&+[((n-2*j+1)/(n-j+1))^4*Binomial(n,j)^4: j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 08 2022
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: a:= n-> add(b(n, n-2*j)^4, j=0..n/2): seq(a(n), n=0..21); # Alois P. Heinz, Mar 25 2025
-
Mathematica
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^4, {k,0, Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
-
PARI
a(n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^4);
-
Python
from math import comb def A129123(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**4 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
-
SageMath
def A129123(n): return sum(((n-2*j+1)/(n-j+1))^4*binomial(n,j)^4 for j in range((n//2)+1)) [A129123(n) for n in range(31)] # G. C. Greubel, Nov 08 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k)^4. - Philippe Deléham, Oct 18 2008
From Vaclav Kotesovec, Dec 16 2017: (Start)
Recurrence: n*(n+1)^3*(15*n^2 - 34*n + 7)*a(n) = 2*n*(90*n^5 - 309*n^4 + 147*n^3 + 124*n^2 - 135*n + 35)*a(n-1) + 4*(n-1)^2*(4*n - 5)*(4*n - 3)*(15*n^2 - 4*n - 12)*a(n-2).
a(n) ~ 3* 2^(4*n - 1/2) / (Pi^(3/2) * n^(7/2)). (End)
a(n) = Sum_{j=0..floor(n/2)} ((n-2*j+1)/(n-j+1))^4 * binomial(n,j)^4. - G. C. Greubel, Nov 08 2022
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^3. - Seiichi Manyama, Mar 25 2025
A003162 A binomial coefficient summation.
1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0
Comments
From Peter Bala, Mar 26 2023: (Start)
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) proposed the problem of showing that S(3,n) was always divisible by S(1,n). The present sequence is {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). For other cases see A361888 ({S(5,n)/S(1,n)}) and A361891 ({S(7,n)/ S(1,n)}).
Conjecture: Let b(n) = a(2*n-1). Then the supercongruence b(n*p^k) == b(n*p^(k-1)) (mod p^(3*k)) holds for positive integers n and k and all primes p >= 5. See A183069. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Programs
-
Maple
H := hypergeom([1/2,1/2],[1],16*x^2); ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x); series(ogf,x=0,20); # Mark van Hoeij, May 06 2013
-
Mathematica
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
PARI
a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */
Formula
G.f.: hypergeometric expression with an antiderivative, see Maple program. - Mark van Hoeij, May 06 2013
Recurrence: 4*n*(n+1)^2*(196*n^3 - 819*n^2 + 530*n + 528)*a(n) = 2*n*(1372*n^4 - 3633*n^3 - 7455*n^2 + 21934*n - 8448)*a(n-1) + (12740*n^6 - 90867*n^5 + 195310*n^4 - 13277*n^3 - 452690*n^2 + 528384*n - 174960)*a(n-2) + 8*(n-2)*(686*n^4 - 3010*n^3 + 1176*n^2 + 6543*n - 4725)*a(n-3) - 16*(n-3)^2*(n-2)*(196*n^3 - 231*n^2 - 520*n + 435)*a(n-4). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 4^(n+2)/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014
A361887 a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0
Comments
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(5,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 5-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..673
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
-
Mathematica
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
Python
from math import comb def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
Formula
a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^5.
a(n) = Sum_{j=0..n} A120730(n,j)^5.
a(n) = A357824(n,5). (End)
a(n) ~ 2^(5*n + 19/2) / (125 * Pi^(5/2) * n^(9/2)). - Vaclav Kotesovec, Aug 27 2023
A361890 a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
Offset: 0
Comments
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(7,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 7-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..483
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7, k = 0..floor(n/2)), n = 0..20);
-
Mathematica
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
Python
from math import comb def A361890(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
Formula
a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^7.
a(n) = Sum_{j=0..n} A120730(n,j)^7.
a(n) = A357824(n,7). (End)
a(n) ~ 3 * 2^(7*n + 27/2) / (2401 * Pi^(7/2) * n^(13/2)). - Vaclav Kotesovec, Aug 27 2023
A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 3, 5, 9, 17, 33, 65, 129, ... 3, 6, 14, 36, 98, 276, 794, 2316, ... 3, 10, 42, 190, 882, 4150, 19722, 94510, ... 4, 20, 132, 980, 7812, 65300, 562692, 4939220, ... 4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..121, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]]; A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)
A361888 a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 1, 1, 11, 46, 415, 3265, 30955, 299500, 3173626, 33576266, 386672861, 4340714886, 52846226091, 620906440961, 7857161332715, 95704821415240, 1246162831674580, 15624127945644100, 207990691516965886, 2669841775757784796, 36176886727828945286, 473508685502539872586
Offset: 0
Comments
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). The present sequence is {S(5,n)/S(1,n)}.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..840
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Mathematica
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^5/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
PARI
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r); a(n) = s(5, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
Formula
a(n) = 1/binomial(n,floor(n/2)) * Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
a(n) ~ 2^(4*n + 9) / (125 * Pi^2 * n^4). - Vaclav Kotesovec, Mar 24 2025
A361889 a(n) = S(5,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 11, 415, 30955, 3173626, 386672861, 52846226091, 7857161332715, 1246162831674580, 207990691516965886, 36176886727828945286, 6510211391453319830461, 1205449991704260042021490, 228686327051301858363357905, 44299708036441260810228742915, 8738765548899621077157770551275
Offset: 1
Comments
Odd bisection of A361888.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 5.
Examples
Examples of supercongruences: a(13) - a(1) = 1205449991704260042021490 - 1 = 3*(13^3)*182893338143568508879 == 0 (mod 13^3). a(2*5) - a(2) = 207990691516965886 - 11 = (5^3)*7*237703647447961 == 0 (mod 5^3)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..420
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^5/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
-
Mathematica
Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^5 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
Python
from math import comb def A361889(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**5 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025
Formula
a(n) = 1/binomial(2*n-1,n-1) * Sum_{k = 0..n-1} ( (2*n - 2*k)/(2*n - k) * binomial(2*n-1,k) )^5 for n >= 1.
a(n) ~ 2^(8*n + 1) / (125 * Pi^2 * n^4). - Vaclav Kotesovec, Mar 24 2025
A361891 a(n) = S(7,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 1, 1, 43, 386, 9451, 246961, 6031627, 212559508, 6571985126, 243940325734, 9140730357409, 352312505157354, 14801600281919487, 600054439936968241, 26927918031565051915, 1149140935414286560040, 53804800109969394477580, 2401141625752684697505820
Offset: 0
Comments
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). The present sequence is {S(7,n)/S(1,n)}.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..563
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Mathematica
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^7/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
PARI
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r); a(n) = s(7, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
-
Python
from math import comb def A361891(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1))//comb(n,n>>1) # Chai Wah Wu, Mar 25 2025
Formula
a(n) = 1/binomial(n,floor(n/2)) * Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
a(n) ~ 3 * 2^(6*n+13) / (2401 * Pi^3 * n^6). - Vaclav Kotesovec, Mar 24 2025
Comments