A003161
A binomial coefficient sum.
Original entry on oeis.org
1, 1, 2, 9, 36, 190, 980, 5705, 33040, 204876, 1268568, 8209278, 53105976, 354331692, 2364239592, 16140234825, 110206067400, 765868074400, 5323547715200, 37525317999884, 264576141331216, 1886768082651816, 13458185494436592, 96906387191038334, 697931136204820336
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1116
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
-
ogf := ((8*x-1)*(8*x+1)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)-3*Int((16*x-5)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)^2,x)+1)/(16*x);
series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
a(n)=sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3) /* Michael Somos, Jun 02 2005 */
A003162
A binomial coefficient summation.
Original entry on oeis.org
1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
H := hypergeom([1/2,1/2],[1],16*x^2);
ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x);
series(ogf,x=0,20); # Mark van Hoeij, May 06 2013
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */
A361887
a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
from math import comb
def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
A357824
Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, 2, ...
2, 3, 5, 9, 17, 33, 65, 129, ...
3, 6, 14, 36, 98, 276, 794, 2316, ...
3, 10, 42, 190, 882, 4150, 19722, 94510, ...
4, 20, 132, 980, 7812, 65300, 562692, 4939220, ...
4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)
A361888
a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 1, 11, 46, 415, 3265, 30955, 299500, 3173626, 33576266, 386672861, 4340714886, 52846226091, 620906440961, 7857161332715, 95704821415240, 1246162831674580, 15624127945644100, 207990691516965886, 2669841775757784796, 36176886727828945286, 473508685502539872586
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^5/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
a(n) = s(5, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
A361889
a(n) = S(5,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 11, 415, 30955, 3173626, 386672861, 52846226091, 7857161332715, 1246162831674580, 207990691516965886, 36176886727828945286, 6510211391453319830461, 1205449991704260042021490, 228686327051301858363357905, 44299708036441260810228742915, 8738765548899621077157770551275
Offset: 1
Examples of supercongruences:
a(13) - a(1) = 1205449991704260042021490 - 1 = 3*(13^3)*182893338143568508879 == 0 (mod 13^3).
a(2*5) - a(2) = 207990691516965886 - 11 = (5^3)*7*237703647447961 == 0 (mod 5^3)
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^5/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
-
Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^5 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
from math import comb
def A361889(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**5 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025
A361891
a(n) = S(7,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 1, 43, 386, 9451, 246961, 6031627, 212559508, 6571985126, 243940325734, 9140730357409, 352312505157354, 14801600281919487, 600054439936968241, 26927918031565051915, 1149140935414286560040, 53804800109969394477580, 2401141625752684697505820
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^7/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
a(n) = s(7, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
-
from math import comb
def A361891(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1))//comb(n,n>>1) # Chai Wah Wu, Mar 25 2025
A361892
a(n) = S(7,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 43, 9451, 6031627, 6571985126, 9140730357409, 14801600281919487, 26927918031565051915, 53804800109969394477580, 116002825041515533807200418, 266118189111094898593879923346, 642598035707739308769581970619393
Offset: 1
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ).
-
seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^7/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
-
Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^7 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
from math import comb
def A361892(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**7 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025
Showing 1-8 of 8 results.
Comments