cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003162 A binomial coefficient summation.

Original entry on oeis.org

1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Mar 26 2023: (Start)
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) proposed the problem of showing that S(3,n) was always divisible by S(1,n). The present sequence is {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). For other cases see A361888 ({S(5,n)/S(1,n)}) and A361891 ({S(7,n)/ S(1,n)}).
Conjecture: Let b(n) = a(2*n-1). Then the supercongruence b(n*p^k) == b(n*p^(k-1)) (mod p^(3*k)) holds for positive integers n and k and all primes p >= 5. See A183069. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    H := hypergeom([1/2,1/2],[1],16*x^2);
    ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x);
    series(ogf,x=0,20);  # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */

Formula

G.f.: hypergeometric expression with an antiderivative, see Maple program. - Mark van Hoeij, May 06 2013
Recurrence: 4*n*(n+1)^2*(196*n^3 - 819*n^2 + 530*n + 528)*a(n) = 2*n*(1372*n^4 - 3633*n^3 - 7455*n^2 + 21934*n - 8448)*a(n-1) + (12740*n^6 - 90867*n^5 + 195310*n^4 - 13277*n^3 - 452690*n^2 + 528384*n - 174960)*a(n-2) + 8*(n-2)*(686*n^4 - 3010*n^3 + 1176*n^2 + 6543*n - 4725)*a(n-3) - 16*(n-3)^2*(n-2)*(196*n^3 - 231*n^2 - 520*n + 435)*a(n-4). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 4^(n+2)/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014

A361887 a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0

Views

Author

Peter Bala, Mar 28 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(5,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 5-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361888 ( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361890 ( S(7,n) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
Column k=5 of A357824.

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
  • Python
    from math import comb
    def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^5.
a(n) = Sum_{j=0..n} A120730(n,j)^5.
a(n) = A357824(n,5). (End)
a(n) ~ 2^(5*n + 19/2) / (125 * Pi^(5/2) * n^(9/2)). - Vaclav Kotesovec, Aug 27 2023

A361890 a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
Offset: 0

Views

Author

Peter Bala, Mar 30 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(7,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 7-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A382394 ( S(3,2*n-1) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361887 ( S(5,n) ), A361888 ( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/ S(1,2*n-1) ).
Column k=7 of A357824.

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^7, k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
  • Python
    from math import comb
    def A361890(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^7.
a(n) = Sum_{j=0..n} A120730(n,j)^7.
a(n) = A357824(n,7). (End)
a(n) ~ 3 * 2^(7*n + 27/2) / (2401 * Pi^(7/2) * n^(13/2)). - Vaclav Kotesovec, Aug 27 2023

A361888 a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 1, 11, 46, 415, 3265, 30955, 299500, 3173626, 33576266, 386672861, 4340714886, 52846226091, 620906440961, 7857161332715, 95704821415240, 1246162831674580, 15624127945644100, 207990691516965886, 2669841775757784796, 36176886727828945286, 473508685502539872586
Offset: 0

Views

Author

Peter Bala, Mar 29 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). The present sequence is {S(5,n)/S(1,n)}.

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361887 ( S(5,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361890 ( S(7,n) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/S(1,2*n-1) ).

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^5/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^5/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
  • PARI
    s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
    a(n) = s(5, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025

Formula

a(n) = 1/binomial(n,floor(n/2)) * Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
a(n) ~ 2^(4*n + 9) / (125 * Pi^2 * n^4). - Vaclav Kotesovec, Mar 24 2025

A361889 a(n) = S(5,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 11, 415, 30955, 3173626, 386672861, 52846226091, 7857161332715, 1246162831674580, 207990691516965886, 36176886727828945286, 6510211391453319830461, 1205449991704260042021490, 228686327051301858363357905, 44299708036441260810228742915, 8738765548899621077157770551275
Offset: 1

Views

Author

Peter Bala, Mar 29 2023

Keywords

Comments

Odd bisection of A361888.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 5.

Examples

			Examples of supercongruences:
a(13) - a(1) = 1205449991704260042021490 - 1 = 3*(13^3)*182893338143568508879 == 0 (mod 13^3).
a(2*5) - a(2) = 207990691516965886 - 11 = (5^3)*7*237703647447961 == 0 (mod 5^3)
		

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A382394 ( S(3,2*n-1) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361887 ( S(5,n) ), A361888 ( S(5,n)/S(1,n) ), A361890 ( S(7,n) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/S(1,2*n-1) ).

Programs

  • Maple
    seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^5/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
  • Mathematica
    Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^5 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
  • Python
    from math import comb
    def A361889(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**5 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = 1/binomial(2*n-1,n-1) * Sum_{k = 0..n-1} ( (2*n - 2*k)/(2*n - k) * binomial(2*n-1,k) )^5 for n >= 1.
a(n) ~ 2^(8*n + 1) / (125 * Pi^2 * n^4). - Vaclav Kotesovec, Mar 24 2025

A361891 a(n) = S(7,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 1, 43, 386, 9451, 246961, 6031627, 212559508, 6571985126, 243940325734, 9140730357409, 352312505157354, 14801600281919487, 600054439936968241, 26927918031565051915, 1149140935414286560040, 53804800109969394477580, 2401141625752684697505820
Offset: 0

Views

Author

Peter Bala, Mar 30 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). The present sequence is {S(7,n)/S(1,n)}.

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361887 ( S(5,n) ), A361888( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361890 ( S(7,n) ), A361892 ( S(7,2*n-1)/S(1,2*n-1) ).

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^7/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^7/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
  • PARI
    s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
    a(n) = s(7, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
    
  • Python
    from math import comb
    def A361891(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1))//comb(n,n>>1) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = 1/binomial(n,floor(n/2)) * Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
a(n) ~ 3 * 2^(6*n+13) / (2401 * Pi^3 * n^6). - Vaclav Kotesovec, Mar 24 2025
Showing 1-6 of 6 results.