A003226 Automorphic numbers: m^2 ends with m.
0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, 259918212890625, 740081787109376
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, p. 26, Ellipses, Paris 2008.
- V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
- R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
- Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-254.
- B. A. Naik, 'Automorphic numbers' in 'Science Today'(subsequently renamed '2001') May 1982 pp. 59, Times of India, Mumbai.
- Ya. I. Perelman, Algebra can be fun, pp. 97-98.
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Hoboken, 2005, p. 64.
- C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1786 (terms n = 1..200 from Vincenzo Librandi)
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2.3 (1969), 170-174. (Annotated scanned copy)
- V. deGuerre & R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1.3 (1968), 173-179
- M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM. MIT AI Memo 239, Feb 29 1972 (Item 59 provides a 40-digit member of this sequence).
- Shyam Sunder Gupta, Elegance of Squares, Cubes, and Higher Powers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 2, 29-81.
- W. Schneider, Automorphic Numbers
- C. P. Schut, Idempotents, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Automorphic Number
- Wikipedia, Automorphic number
- Xiaolong Ron Yu, Curious Numbers, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823.
- Index entries for sequences related to automorphic numbers
Programs
-
Haskell
import Data.List (isSuffixOf) a003226 n = a003226_list !! (n-1) a003226_list = filter (\x -> show x `isSuffixOf` show (x^2)) a008851_list -- Reinhard Zumkeller, Jul 27 2011
-
Magma
[n: n in [0..10^7] | Intseq(n^2)[1..#Intseq(n)] eq Intseq(n)]; // Vincenzo Librandi, Jul 03 2015
-
Maple
V:= proc(m) option remember; select(t -> t^2 - t mod 10^m = 0, map(s -> seq(10^(m-1)*j+s, j=0..9), V(m-1))) end proc: V(0):= {0,1}: V(1):= {5,6}: sort(map(op,[V(0),seq(V(i) minus V(i-1),i=1..50)])); # Robert Israel, Jun 19 2015
-
Mathematica
f[k_] := (r = Reduce[0 < 10^k < n < 10^(k + 1) && n^2 == m*10^(k + 1) + n, {n, m}, Integers]; If[Head[r] === And, n /. ToRules[r], n /. {ToRules[r]}]); Flatten[ Join[{0, 1}, Table[f[k], {k, 0, 13}]]] (* Jean-François Alcover, Dec 01 2011 *) Union@ Join[{1}, Array[PowerMod[5, 2^#, 10^#] &, 16, 0], Array[PowerMod[16, 5^#, 10^#] &, 16, 0]] (* Robert G. Wilson v, Jul 23 2018 *)
-
PARI
is_A003226(n)={n<2 || 10^valuation(n^2-n,10)>n} \\ M. F. Hasler, Dec 05 2012
-
PARI
A003226(n)={ n<3 & return(n-1); my(i=10,j=10,b=5,c=6,a=b); for( k=4,n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b,c)); a } \\ M. F. Hasler, Dec 06 2012
-
Python
from itertools import count, islice from sympy.ntheory.modular import crt def A003226_gen(): # generator of terms a = 0 yield from (0,1) for n in count(0): b = sorted((int(crt(m:=(1<
a: yield from b a = b[1] elif b[1] > a: yield b[1] a = b[1] A003226_list = list(islice(A003226_gen(),15)) # Chai Wah Wu, Jul 25 2022 -
Sage
def automorphic(maxdigits, pow, base=10) : morphs = [[0]] for i in range(maxdigits): T=[d*base^i+x for x in morphs[-1] for d in range(base)] morphs.append([x for x in T if x^pow % base^(i+1) == x]) res = list(set(sum(morphs, []))); res.sort() return res # call with pow=2 for this sequence, Eric M. Schmidt, Feb 09 2014
Extensions
More terms from Michel ten Voorde, Apr 11 2001
Edited by David W. Wilson, Sep 26 2002
Incorrect statement removed from title by Robert Dawson, Jul 09 2018
Comments