A003238 Number of rooted trees with n vertices in which vertices at the same level have the same degree.
1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 40, 41, 53, 61, 77, 78, 104, 105, 134, 147, 175, 176, 227, 233, 275, 294, 350, 351, 438, 439, 516, 545, 624, 640, 774, 775, 881, 924, 1069, 1070, 1265, 1266, 1444, 1521, 1698, 1699
Offset: 1
Examples
a(4) = 3 because we have the path P(4), the tree Y, and the star \|/ . - _Emeric Deutsch_, Aug 18 2012 The planted achiral trees with up to 7 nodes are: 1 - 1 (-) 2 (--), ((-)) 3 (---), ((--)), (((-))) 5 (----), ((-)(-)), ((---)), (((--))), ((((-)))) 6 (-----), ((----)), (((-)(-))), (((---))), ((((--)))), (((((-))))) 10 (------), ((-)(-)(-)), ((--)(--)), (((-))((-))), ((-----)), (((----))), ((((-)(-)))), ((((---)))), (((((--))))), ((((((-)))))). - _Gus Wiseman_, Jan 12 2017
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- G. Gati, F. Harary, and R. W. Robinson, Line colored trees with extendable automorphisms, Acta Mathematica Scientia 2.1 (1982), 105-110. (Annotated scanned copy)
- M. K. Goldberg and E. M. Livshits, On minimal universal trees, Mathematical Notes of the Acad. of Sciences of the USSR, 4, 1968, 713-717 (translation from the Russian Mat. Zametki 4 1968 371-379).
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- B. S. Kochkarev, Absolutely symmetric trees and complexity of natural number, arXiv:1205.0344 [math.CO], 2012.
- MathOverflow, Are the asymptotics of A003238 known?
- O. Rojo, Spectra of weighted generalized Bethe trees joined at the root, Linear Algebra and its Appl., 428, 2008, 2961-2979.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Transforms
- Gus Wiseman, Planted achiral trees n=1..10.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Haskell
a003238 n = a003238_list !! (n-1) a003238_list = 1 : f 1 where f x = (sum (map a003238 $ a027750_row x)) : f (x + 1) -- Reinhard Zumkeller, Dec 20 2014
-
JavaScript
a = new Array(); for (i = 1; i < 50; i++) a[i] = 1; for (i = 3; i < 50; i++) for (j = 2; j < i; j++) if (i % j == 1) a[i] += a[j]; document.write(a + "
"); // Jon Perry, Nov 20 2012 -
Maple
with(numtheory): aa := proc (n) if n = 0 then 1 else add(aa(divisors(n)[i]-1), i = 1 .. tau(n)) end if end proc: a := proc (n) options operator, arrow: aa(n-1) end proc: seq(a(n), n = 1 .. 48); # Emeric Deutsch, Aug 18 2012 A003238:= proc(n) option remember; uses numtheory; add(A003238(m),m=divisors(n-1)) end proc; A003238(1):= 1; [seq(A003238(n),n=1..48)]; # Robert Israel, Mar 10 2014
-
Mathematica
(* b = A068336 *) b[1] = 1; b[n_] := b[n] = 1 + Sum[b[k], {k, Divisors[n-1]}]; a[n_] := b[n]/2; a[1] = 1; Table[ a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 20 2011, after Ralf Stephan *) achi[n_]:=If[n===1,1,Total[achi/@Divisors[n-1]]];Array[achi,50] (* Gus Wiseman, Jan 12 2017 *)
-
PARI
seq(n) = {my(v=vector(n)); v[1]=1; for(i=2, n, v[i]=sumdiv(i-1, d, v[d])); v} \\ Andrew Howroyd, Jun 08 2025
Formula
Shifts one place left under inverse Moebius transform: a(n+1) = Sum_{k|n} a(k).
Conjecture: log(a(n)) is asymptotic to c*log(n)^2 where 0.4 < c < 0.5 - Benoit Cloitre, Apr 13 2004
For n > 1, a(n) = (1/2) * A068336(n) and Sum_{k = 1..n} a(k) = A003318(n). - Ralf Stephan, Mar 27 2004
Generating function P(x) for the sequence with offset 2 obeys P(x) = x^2*(1 + Sum_{n >= 1} P(x^n)/x^n). [Harary & Robinson]. - R. J. Mathar, Sep 28 2011
a(n) = 1 + sum of a(i) such that n == 1 (mod i). - Jon Perry, Nov 20 2012
From Ilya Gutkovskiy, Apr 28 2019: (Start)
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{n>=1} (1 - x^n)^(a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n. (End)
Extensions
Description improved by Christian G. Bower, Oct 15 1998
Comments