A003451 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.
1, 4, 8, 16, 25, 40, 56, 80, 105, 140, 176, 224, 273, 336, 400, 480, 561, 660, 760, 880, 1001, 1144, 1288, 1456, 1625, 1820, 2016, 2240, 2465, 2720, 2976, 3264, 3553, 3876, 4200, 4560, 4921, 5320, 5720, 6160, 6601, 7084, 7568, 8096, 8625, 9200, 9776, 10400
Offset: 5
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 1, 2, -1).
Programs
-
Magma
[(n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24: n in [5..60]]; // Vincenzo Librandi, Apr 05 2015
-
Maple
T51:= proc(n) if n mod 2 = 0 then n*(n-2)*(n-4)/12; else (n+1)*(n-3)*(n-4)/12; fi end; [seq(T51(n),n=5..80)]; # N. J. A. Sloane, Dec 28 2012
-
Mathematica
Table[((n - 4) (2 n^2 - 4 n - 3 (1 - (-1)^n)) / 24), {n, 5, 60}] (* Vincenzo Librandi, Apr 05 2015 *) CoefficientList[Series[(1+2*x-x^2)/((1-x)^4*(1+x)^2),{x,0,20}],x] (* Vaclav Kotesovec, Apr 05 2015 *)
-
PARI
Vec((1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Michel Marcus, Apr 04 2015
-
PARI
\\ See A295495 for DissectionsModCyclic() { my(v=DissectionsModCyclic(apply(i->y, [1..30]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
Formula
G.f.: x^5 * (1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2).
See also the Maple code for an explicit formula.
a(n) = (n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24, for n>=5. - Luce ETIENNE, Apr 04 2015
Extensions
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
First formula adapted to offset by Vaclav Kotesovec, Apr 05 2015
Name clarified by Andrew Howroyd, Nov 25 2017
Comments