A003464 a(n) = (6^n - 1)/5.
0, 1, 7, 43, 259, 1555, 9331, 55987, 335923, 2015539, 12093235, 72559411, 435356467, 2612138803, 15672832819, 94036996915, 564221981491, 3385331888947, 20311991333683, 121871948002099, 731231688012595, 4387390128075571
Offset: 0
Examples
a(n) in base 6.................... a(n) in base 10: 0..................................0 1..................................1 11.................................7 111................................43 1111...............................259 11111..............................1555 111111.............................9331 1111111............................55987, etc. - _Philippe Deléham_, Mar 12 2014
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 375
- Kival Ngaokrajang, Illustration of initial terms
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Eric Weisstein's World of Mathematics, Repunit.
- Index entries for linear recurrences with constant coefficients, signature (7,-6).
Programs
-
Magma
[n le 2 select n-1 else 7*Self(n-1) - 6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
-
Maple
a:=n->sum(6^(n-j),j=1..n): seq(a(n), n=1..21); # Zerinvary Lajos, Jan 04 2007 A003464:=1/(6*z-1)/(z-1); # conjectured by Simon Plouffe in his 1992 dissertation a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+2 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
-
Mathematica
(6^Range[20]-1)/5 (* Harvey P. Dale, Dec 14 2010 *) LinearRecurrence[{7, -6}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
Maxima
A003464(n):=floor((6^n-1)/5)$ makelist(A003464(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
for(n=1,10,print1((6^n-1)/5,","));
-
Sage
[lucas_number1(n,7,6) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
-
Sage
[gaussian_binomial(n,1,6) for n in range(1,22)] # Zerinvary Lajos, May 28 2009
Formula
Binomial transform of A003948. If preceded by 0, then binomial transform of powers of 5, A000351 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} C(n, k)*5^(k-1).
E.g.f.: (exp(6*x) - exp(x))/5. - Paul Barry, Mar 28 2003
G.f.: x/((1-x)*(1-6*x)). - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005
a(n) = 6*a(n-1) + 1 with a(1)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = 7*a(n-1) - 6*a(n-2). - Vincenzo Librandi, Nov 08 2012
Extensions
More terms from Reinhard Zumkeller, Nov 21 2006
G.f. corrected by Philippe Deléham, Mar 11 2014
Comments