A159951
Fibonacci integral quotients associated with the dividends in A159950 and the divisors in A003481.
Original entry on oeis.org
12, 856800, 139890541190400, 50664770469826998541056000, 40527253814267058837705250384270510080000, 71554565901386985191123530075861409411081105273676595200000
Offset: 1
The first two integral quotients occur in the Fibonacci sequence as illustrated by the following: (1*1*2*3*5*8)/(1+1+2+3+5+8) = 240/20 = 12, integral; (1*1*2*3*5*8*13*21*34*55)/(1+1+2+3+5+8+13+21+34+55) = 122522400/143 = 856800, integral.
-
with(combinat):
seq(mul(fibonacci(k), k = 1..4*n+2)/(fibonacci(4*n+4) - 1), n = 1..10); # Peter Bala, Nov 04 2021
-
10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A;:S=S*1 50 B=1:print B;:S=S*B 60 C=A+B:print C;:R=R+C:S=S*C 70 D=B+C:print D;:R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60
A081006
a(n) = Fibonacci(4n) - 1, or Fibonacci(2n+1)*Lucas(2n-1).
Original entry on oeis.org
2, 20, 143, 986, 6764, 46367, 317810, 2178308, 14930351, 102334154, 701408732, 4807526975, 32951280098, 225851433716, 1548008755919, 10610209857722, 72723460248140, 498454011879263, 3416454622906706, 23416728348467684, 160500643816367087
Offset: 1
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
-
List([1..30], n-> Fibonacci(4*n)-1); # G. C. Greubel, Jul 15 2019
-
[Fibonacci(4*n)-1: n in [1..30]]; // Vincenzo Librandi, Apr 15 2011
-
with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n)-1) od # James Sellers, Mar 03 2003
-
Fibonacci[4*Range[30]]-1 (* or *) LinearRecurrence[{8,-8,1}, {2,20,143}, 30] (* Harvey P. Dale, Mar 19 2018 *)
-
vector(30, n, fibonacci(4*n)-1) \\ G. C. Greubel, Jul 15 2019
-
[fibonacci(4*n)-1 for n in (1..30)] # G. C. Greubel, Jul 15 2019
A159950
Dividends where Fibonacci products/sums yield integral quotients.
Original entry on oeis.org
240, 122522400, 137932073613734400, 342696507457909818131702784000, 1879127177606120717127879344567470740879360000, 22740756589119797763590969093409514524935686067027158720512000000
Offset: 1
This table illustrates the alternating nature of the first three integral quotients: 1 1 2 3 -- 6/7=.85+ 5 8 -- 240/20=12 Integral 13 21 -- 65520/54=1213.33+ 34 55 -- 122522400/143=856800 Integral 89 144 -- 1570247078400/376=4176189038.29+ 233 377 -- 137932073613734400/986=139890541190400 Integral etc.
-
seq(mul(fibonacci(k), k = 1..4*n+2), n = 1..10); # Peter Bala, Nov 04 2021
-
10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A;:S=S*1 50 B=1:print B;:S=S*B 60 C=A+B:print C;:R=R+C:S=S*C 70 D=B+C:print D;:R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60
Showing 1-3 of 3 results.
Comments