A003484 Radon function, also called Hurwitz-Radon numbers.
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2
Offset: 1
Examples
G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
References
- T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
- Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.
- A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. Frank Adams, Vector fields on spheres, Topology, Vol. 1 (1962), pp. 63-65.
- J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc., Vol. 68 (1962), pp. 39-41.
- J. Frank Adams, Vector fields on spheres, Annals of Math., Vol. 75 (1962), pp. 603-632.
- J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., Vol. 307 (2003), pp. 3-29.
- Adolf Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen, Vol. 88 (1923), pp. 1-25.
- Michel A. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA, Vol. 44, No. 3 (1958), pp. 280-283.
- John Milnor, Some consequences of a theorem of Bott, Annals of Mathematics, Second Series, Vol. 68, No. 2 (1958), pp. 444-449.
- Johann Radon, Lineare scharen orthogonaler matrizen,Abh. Math. Sem. Univ. Hamburg, Vol. 1 (1922), pp. 1-14.
- Daniel B. Shapiro, Letter to N. J. A. Sloane, 1974.
- Index entries for "core" sequences.
Programs
-
Haskell
a003484 n = 2 * e + cycle [1,0,0,2] !! e where e = a007814 n -- Reinhard Zumkeller, Mar 11 2012
-
Maple
readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d,`,1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d,`,2*m+1) fi: if m mod 4 = 1 then printf(`%d,`,2*m) fi: if m mod 4 = 2 then printf(`%d,`,2*m) fi: if m mod 4 = 3 then printf(`%d,`,2*m+2) fi: fi: od: # James Sellers, Dec 07 2000 nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # Johannes W. Meijer, Jun 07 2011, Dec 15 2012
-
Mathematica
a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 08 2011, after Paul D. Hanna *)
-
PARI
a(n)=8*(valuation(n,2)\4)+2^(valuation(n,2)%4) /* Paul D. Hanna, Dec 02 2004 */
-
Python
def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # Chai Wah Wu, Jul 09 2022
Formula
If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.
If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).
Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - R. J. Mathar, Mar 04 2011
a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - Reinhard Zumkeller, Mar 11 2012
a((2*n-1)*2^p) = A003485(p), p >=0. - Johannes W. Meijer, Jun 07 2011, Dec 15 2012
Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - Mamuka Jibladze, Dec 07 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - Amiram Eldar, Oct 22 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000
Comments