cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003605 Unique monotonic sequence of nonnegative integers satisfying a(a(n)) = 3n.

Original entry on oeis.org

0, 2, 3, 6, 7, 8, 9, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120
Offset: 0

Views

Author

Keywords

Comments

Another definition: a(0) = 0, a(1) = 2; for n > 1, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is a multiple of 3". - Benoit Cloitre, Feb 14 2003
Yet another definition: a(0) = 0, a(1)=2; for n > 1, a(n) is the smallest integer > a(n-1) satisfying "if n is in the sequence, a(n)==0 (mod 3)" ("only if" omitted).
This sequence is the case m = 2 of the following family: a(1, m) = m, a(n, m) is the smallest integer > a(n-1, m) satisfying "if n is in the sequence, a(n, m) == 0 (mod (2m-1))". The general formula is: for any k >= 0, for j = -m*(2m-1)^k, ..., -1, 0, 1, ..., m*(2m-1)^k, a((m-1)*(2*m-1)^k+j) = (2*m-1)^(k+1)+m*j+(m-1)*abs(j).
Numbers whose base-3 representation starts with 2 or ends with 0. - Franklin T. Adams-Watters, Jan 17 2006
This sequence was the subject of the 5th problem of the 27th British Mathematical Olympiad in 1992 (see link British Mathematical Olympiad, reference Gardiner's book and second example for the answer to the BMO question). - Bernard Schott, Dec 25 2020

Examples

			9 is in the sequence and the smallest multiple of 3 greater than a(9-1)=a(8)=15 is 18. Hence a(9)=18.
a(1992) = a(2*3^6+534) = 3^7+3*534 = 3789 (answer to B.M.O. problem).
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, pages 5 and 113-114 (1992).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3: A080637 (k=2), this sequence (k=3), A353651 (k=4), A353652 (k=5), A353653 (k=6).

Programs

  • Maple
    filter:= n ->  (n mod 3 = 0) or (n >= 2*3^floor(log[3](n))):
    select(filter, [$0..1000]); # Robert Israel, Oct 15 2014
  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 3] == 0, 3 a[n/3], Mod[n, 3] == 1, 2*a[(n-1)/3] + a[(n-1)/3 + 1], True, a[(n-2)/3] + 2*a[(n-2)/3 + 1]]; a[0]=0; a[1]=2; a[2]=3; Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Jul 18 2012, after Michael Somos *)
  • PARI
    a(n)=if(n<3,n+(n>0),(3-(n%3))*a(n\3)+(n%3)*a(n\3+1))
    
  • PARI
    {A(n)=local(d,w,l3=log(3),l2=log(2),l3n);
               l3n = log(n)/l3;
               w   = floor(l3n);         \\ highest exponent w such that 3^w <= n
               d   = frac(l3n)*l3/l2+1;  \\ first digit in base-3 repr. of n
                  if ( d<2 , d=1 , d=2 );\\   make d an integer either 1 or 2
               if(d==1, n = n + 3^w , n = (n - 3^w)*3);
               return(n);}
    \\ Gottfried Helms, Jan 11 2012
    
  • Python
    from sympy import integer_log
    def A003605(n): return max(n+(m:=3**integer_log(n,3)[0]),3*(n-m)) if n else 0  # Chai Wah Wu, Feb 03 2025

Formula

For any k>=0, a(3^k - j) = 2*3^k - 3j, 0 <= j <= 3^(k-1); a(3^k + j) = 2*3^k + j, 0 <= j <= 3^k.
From Michael Somos, May 03 2000: (Start)
a(3*n) = 3*a(n), a(3*n+1) = 2*a(n) + a(n+1), a(3*n+2) = a(n) + 2a(n+1), n > 0.
a(n+1) - 2*a(n) + a(n-1) = {2 if n=3^k, -2 if n=2*3^k, otherwise 0}, n > 1. (End)
a(n) = n + A006166(n). - Vladeta Jovovic, Mar 01 2003
a(n) = abs(2*3^floor(log_3(n)) - n) + 2n - 3^floor(log_3(n)) for n>=1. - Theodore Lamort de Gail, Sep 12 2017
For any k >= 0, a(2*3^k + j) = 3^(k+1) + 3*j, 0 <= j <= 3^k. - Bernard Schott, Dec 25 2020