A003629 Primes p == +- 3 (mod 8), or, primes p such that 2 is not a square mod p.
3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563
Offset: 1
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Robert Israel, Proof of comments by Hilliard (also conjectured by Detlefs) and Ibrishimova
- Index to sequences related to decomposition of primes in quadratic fields
Programs
-
Magma
[3] cat [p: p in PrimesUpTo (600) | p^2 mod 48 eq 25]; // Vincenzo Librandi, May 23 2016
-
Maple
for n from 2 to 563 do if(ithprime(n)^2 mod 48 = 25) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
-
Mathematica
Select[Prime @ Range[2, 105], JacobiSymbol[2, # ] == -1 &] (* Robert G. Wilson v, Dec 15 2005 *) Select[Union[8Range[100] - 5, 8Range[100] - 3], PrimeQ[#] &] (* Alonso del Arte, May 22 2016 *) Select[Prime[Range[150]],MemberQ[{3,5},Mod[#,8]]&] (* Harvey P. Dale, Mar 02 2022 *)
-
PARI
is(n)=isprime(n) && (n%8==3 || n%8==5) \\ Charles R Greathouse IV, Mar 21 2016
Comments