cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A095014 Number of 8k+-3 primes (A003629) in range [2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 21, 40, 70, 129, 231, 434, 819, 1505, 2884, 5358, 10198, 19303, 36847, 70173, 134233, 256831, 492856, 947182, 1822968, 3513746, 6781112, 13104524, 25348436, 49092129, 95167472, 184663536, 358631365, 697100084, 1356061232, 2639871771, 5142831980
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095013(n) = A095010(n) + A095011(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A016825 Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234
Offset: 0

Views

Author

Keywords

Comments

Twice the odd numbers, also called singly even numbers.
Numbers having equal numbers of odd and even divisors: A001227(a(n)) = A000005(2*a(n)). - Reinhard Zumkeller, Dec 28 2003
Continued fraction for coth(1/2) = (e+1)/(e-1). The continued fraction for tanh(1/2) = (e-1)/(e+1) would be a(0) = 0, a(n) = A016825(n-1), n >= 1.
No solutions to a(n) = b^2 - c^2. - Henry Bottomley, Jan 13 2001
Sequence gives m such that 8 is the largest power of 2 dividing A003629(k)^m-1 for any k. - Benoit Cloitre, Apr 05 2002
k such that Sum_{d|k} (-1)^d = A048272(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} phi(d)*mu(k/d) = A007431(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} (d/A000005(d))*mu(k/d) = 0, k such that Sum_{d|k}(A000005(d)/d)*mu(k/d) = 0. - Benoit Cloitre, Apr 19 2002
Solutions to phi(x) = phi(x/2); primorial numbers are here. - Labos Elemer, Dec 16 2002
Together with 1, numbers that are not the leg of a primitive Pythagorean triangle. - Lekraj Beedassy, Nov 25 2003
For n > 0: complement of A107750 and A023416(a(n)-1) = A023416(a(n)) <> A023416(a(n)+1). - Reinhard Zumkeller, May 23 2005
Also the minimal value of Sum_{i=1..n+2} (p(i) - p(i+1))^2, where p(n+3) = p(1), as p ranges over all permutations of {1,2,...,n+2} (see the Mihai reference). Example: a(2)=10 because the values of the sum for the permutations of {1,2,3,4} are 10 (8 times), 12 (8 times) and 18 (8 times). - Emeric Deutsch, Jul 30 2005
Except for a(n)=2, numbers having 4 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
A139391(a(n)) = A006370(a(n)) = A005408(n). - Reinhard Zumkeller, Apr 17 2008
Also a(n) = (n-1) + n + (n+1) + (n+2), so a(n) and -a(n) are all the integers that are sums of four consecutive integers. - Rick L. Shepherd, Mar 21 2009
The denominator in Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 13 2011
This sequence gives the positive zeros of i^x + 1 = 0, x real, where i^x = exp(i*x*Pi/2). - Ilya Gutkovskiy, Aug 08 2015
Numbers k such that Sum_{j=1..k} j^3 is not a multiple of k. - Chai Wah Wu, Aug 23 2017
Numbers k such that Lucas(k) is a multiple of 3. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 5), where t is a term of A047221. - Bruno Berselli, Dec 28 2017
The even numbers form a ring, and these are the primes in that ring. Note that unique factorization into primes does not hold, since 60 = 2*30 = 6*10. - N. J. A. Sloane, Nov 11 2019
Also numbers ending with 10 in base 2. - John Keith, May 09 2022

Examples

			0.4621171572600097585023184... = 0 + 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))), i.e., c.f. for tanh(1/2).
2.1639534137386528487700040... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))), i.e., c.f. for coth(1/2).
		

References

  • H. Bass, Mathematics, Mathematicians and Mathematics Education, Bull. Amer. Math. Soc. (N.S.) 42 (2004), no. 4, 417-430.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 262, 278.

Crossrefs

First differences of A001105.
Cf. A160327 (decimal expansion).
Subsequence of A042963.
Essentially the complement of A042965.

Programs

Formula

a(n) = 4*n + 2, for n >= 0.
a(n) = 2*A005408(n). - Lekraj Beedassy, Nov 28 2003
a(n) = A118413(n+1,2) for n>1. - Reinhard Zumkeller, Apr 27 2006
From Michael Somos, Apr 11 2007: (Start)
G.f.: 2*(1+x)/(1-x)^2.
E.g.f.: 2*(1+2*x)*exp(x).
a(n) = a(n-1) + 4.
a(-1-n) = -a(n). (End)
a(n) = 8*n - a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Nov 20 2010
From Reinhard Zumkeller, Jun 11 2012, Jun 30 2012 and Jul 20 2012: (Start)
A080736(a(n)) = 0.
A007814(a(n)) = 1;
A037227(a(n)) = 3.
A214546(a(n)) = 0. (End)
a(n) = T(n+2) - T(n-2) where T(n) = n*(n+1)/2 = A000217(n). In general, if M(k,n) = 2*k*n + k, then M(k,n) = T(n+k) - T(n-k). - Charlie Marion, Feb 24 2020
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2-sqrt(2)) (A285871).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(1-1/sqrt(2)) (A154739). (End)

A038873 Primes p such that 2 is a square mod p; or, primes congruent to {1, 2, 7} mod 8.

Original entry on oeis.org

2, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599, 601, 607, 617
Offset: 1

Views

Author

Keywords

Comments

Same as A001132 except for initial term.
Primes p such that x^2 = 2 has a solution mod p.
The primes of the form x^2 + 2xy - y^2 coincide with this sequence. These are also primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
Therefore these are composite in Z[sqrt(2)], as they can be factored as (u^2 - 2v^2)*(u^2 + 2v^2). - Alonso del Arte, Oct 03 2012
After a(1) = 2, these are the primes p such that p^4 == 1 (mod 96). - Gary Detlefs, Jan 22 2014
Also primes of the form 2v^2 - u^2. For example, 23 = 2*4^2 - 3^2. - Jerzy R Borysowicz, Oct 27 2015
Prime factors of A008865 and A028884. - Klaus Purath, Dec 07 2020

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, Theorem 5-5, p. 68.

Crossrefs

Cf. A057126, A087780, A226523, A003629 (complement).
Primes in A035251.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(617) | IsSquare(R!2) where R:=ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,2,7}),ithprime(n),NULL),n=1..113); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    fQ[n_] := MemberQ[{1, 2, 7}, Mod[n, 8]]; Select[ Prime[Range[114]], fQ] (* Robert G. Wilson v, Oct 18 2011 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(2,n)) \\ Charles R Greathouse IV, Apr 23 2015
    
  • PARI
    is(n)=abs(centerlift(Mod(n,8)))<3 && isprime(n) \\ Charles R Greathouse IV, Nov 14 2017

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016

A017113 a(n) = 8*n + 4.

Original entry on oeis.org

4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428, 436, 444, 452, 460, 468
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(65).
n such that 16 is the largest power of 2 dividing A003629(k)^n - 1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/4). - Benoit Cloitre, Dec 17 2002
Consider all primitive Pythagorean triples (a,b,c) with c - a = 8, sequence gives values for b. (Corresponding values for a are A078371(n), while c follows A078370(n).) - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
Also numbers of the form a^2 + b^2 + c^2 + d^2, where a,b,c,d are odd integers. - Alexander Adamchuk, Dec 01 2006
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 4-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
A007814(a(n)) = 2; A037227(a(n)) = 5. - Reinhard Zumkeller, Jun 30 2012
Numbers k such that 3^k + 1 is divisible by 41. - Bruno Berselli, Aug 22 2018
Lexicographically smallest arithmetic progression of positive integers avoiding Fibonacci numbers. - Paolo Xausa, May 08 2023
From Martin Renner, May 24 2024: (Start)
Also number of points in a grid cross with equally long arms and a width of two points, e.g.:
* *
* * * *
* * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * *
* * * *
* *
etc. (End)

Crossrefs

First differences of A016742 (even squares).
Cf. A078370, A078371, A081770 (subsequence).

Programs

Formula

a(n) = A118413(n+1,3) for n > 2. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{k=0..4*n} (i^k+1)*(i^(4*n-k)+1), where i = sqrt(-1). - Bruno Berselli, Mar 19 2012
a(n) = 4*A005408(n). - Omar E. Pol, Apr 17 2016
E.g.f.: (8*x + 4)*exp(x). - G. C. Greubel, Apr 26 2018
G.f.: 4*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/16 (A019683). - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(3*Pi/16).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(3*Pi/16). (End)
a(n) = 2*A016825(n) = A008586(2*n+1). - Elmo R. Oliveira, Apr 10 2025

A244626 Composite numbers k congruent to 5 (mod 8) such that 2^((k-1)/2) mod k = k-1.

Original entry on oeis.org

3277, 29341, 49141, 80581, 88357, 104653, 196093, 314821, 458989, 489997, 800605, 838861, 873181, 1004653, 1251949, 1373653, 1509709, 1678541, 1811573, 1987021, 2269093, 2284453, 2387797, 2746477, 2909197, 3400013, 3429037, 3539101, 3605429, 4360621, 4502485, 5590621, 5599765
Offset: 1

Views

Author

Gary Detlefs, Jul 02 2014

Keywords

Comments

This sequence contains the n mod 8 = 5 pseudoprimes to the following modified Fermat primality criterion:
Conjecture 1: if p is an odd prime congruent to {3,5} (mod 8) then 2^((p-1)/2) mod p = p-1.
This conjecture has been tested to 10^8.
This criterion produces far fewer pseudoprimes than the 2^(n-1) mod n = 1 test and thus has a higher probability of success. The number of pseudoprimes for the two tests up to 10^k are:
10^5 5 26 19.23%
10^6 13 78 16.66%
10^7 40 228 17.54%
There are 40 terms < 10^7. If an additional constraint 3^(n-1) mod n = 1 and 5^(n-1) mod n = 1 is added, only 4 terms remain: (29341, 314821, 873181, 9863461).
This sequence appears to be a subset of A175865, A001262, A047713, A020230.
Number of terms below 10^k for k = 5..15: 5, 13, 40, 132, 369, 975, 2534, 6592, 17403, 45801, 122473. The corresponding numbers for 2^(n-1) mod n = 1: 26, 78, 228, 637, 1718, 4505, 11645, 29902, 76587, 197455, 513601. - Jens Kruse Andersen, Jul 13 2014
Also composite numbers 2n+1 with n even such that 2n+1 | 2^n+1. - Hilko Koning, Jan 27 2022
Conjecture 1 is true. With p = 2k+1 then 2^k mod (2k+1) == 2k. So 2k+1 | 2k-2^k. Prime numbers 2k+1 == +-3 (mod 8) are the prime numbers such that 2k+1 | 2^k+1 (Comments A007520). A reflection across the x-axis and +1 translation across the y-axis of the graph (2k-2^k) / (2k+1) gives the graph (2^k+1) / (2k+1). So the k values of both 2k+1 | 2k-2^k and 2k+1 | 2^k+1 are identical. - Hilko Koning, Feb 04 2022

Crossrefs

Programs

  • Maple
    for n from 5 to 10^7 by 8 do if 2^((n-1)/2) mod n = n-1 and not isprime(n) then print(n) fi od;

Extensions

a(18) corrected by Jens Kruse Andersen, Jul 13 2014

A028884 a(n) = (n + 3)^2 - 8.

Original entry on oeis.org

1, 8, 17, 28, 41, 56, 73, 92, 113, 136, 161, 188, 217, 248, 281, 316, 353, 392, 433, 476, 521, 568, 617, 668, 721, 776, 833, 892, 953, 1016, 1081, 1148, 1217, 1288, 1361, 1436, 1513, 1592, 1673, 1756, 1841, 1928, 2017, 2108, 2201, 2296, 2393
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Jan 04 2023: (Start)
The product of two consecutive terms belongs to the sequence: a(n)*a(n+1) = a(a(n)+n) = (a(n)+n)*(a(n+1)-n-1) + 1.
a(n) is never divisible by primes given in A003629.
Each odd prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -6 (mod p).
The prime factors are listed in A038873 and the primes in A028886.
For n > 0, this is a proper subsequence of A079896.
Conjecture: a(n) = A079896(A265284(n-1)). -
(End)

Examples

			From _Stefano Spezia_, Nov 08 2022: (Start)
Illustrations for n = 0..4:
          *       * * *     * * * * *
      a(0) = 1    *   *     *       *
                  * * *     *   *   *
                a(1) = 8    *       *
                            * * * * *
                            a(2) = 17
.
   * * * * * * *    * * * * * * * * *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   * * * * * * *    *   *   *   *   *
     a(3) = 28      *               *
                    * * * * * * * * *
                        a(4) = 41
(End)
		

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*n + 5 (with a(0) = 1). - Vincenzo Librandi, Aug 05 2010
a(n) = A028560(n) + 1; A014616(n) = floor(a(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
G.f.: (-1 - 5*x + 4*x^2)/(x - 1)^3. - R. J. Mathar, Mar 24 2013
Sum_{n >= 0} 1/a(n) = 51/112 - Pi*cot(2*Pi*sqrt(2))/(4*sqrt(2)) = 1.3839174974448... . - Vaclav Kotesovec, Apr 10 2016
E.g.f.: (1 + 7*x + x^2)*exp(x). - G. C. Greubel, Aug 19 2017
Sum_{n >= 0} (-1)^n/a(n) = (-19 + 14*sqrt(2)*Pi*cosec(2*sqrt(2)*Pi))/112. - Amiram Eldar, Nov 04 2020
From Klaus Purath, Jan 04 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2, n >= 2.
a(n) = A082111(n) + n.
a(n) = A190576(n+1) - n. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 7*Pi/(45*sqrt(2)*sin(2*sqrt(2)*Pi)).
Product_{n>=0} (1 + 1/a(n)) = (4*sqrt(14)/9)*sin(sqrt(7)*Pi)/sin(2*sqrt(2)*Pi). (End)

Extensions

Definition corrected by Omar E. Pol, Jul 27 2009

A047621 Numbers that are congruent to {3, 5} mod 8.

Original entry on oeis.org

3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93, 99, 101, 107, 109, 115, 117, 123, 125, 131, 133, 139, 141, 147, 149, 155, 157, 163, 165, 171, 173, 179, 181, 187, 189, 195, 197, 203, 205, 211, 213, 219, 221, 227, 229
Offset: 1

Views

Author

Keywords

Comments

Numbers k for which Jacobi symbol J(2,k) = -1, so 2 (as well as 2^k) is not a square mod k. - Antti Karttunen, Aug 27 2005, corrected by Jianing Song, Nov 05 2019, see also A329095.
Numbers n whose multiplicative order modulo 2^k is 2^(k - 2) for k >= 4. For k = 3, the numbers whose multiplicative order modulo 8 is 2 are in sequence A047484. - Jianing Song, Apr 29 2018

Crossrefs

Row 1 of A112070. Complement of A047522 relative to A005408. Primes in this sequence: A003629.
Subsequence of A329095.

Programs

  • GAP
    a:=[3];; for n in [2..60] do a[n]:=8*n-a[n-1]-8; od; a; # Muniru A Asiru, Dec 04 2018
  • Haskell
    a047621 n = a047621_list !! (n-1)
    a047621_list = 3 : 5 : map (+ 8) a047621_list
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 5, 11}, 100] (* Jean-François Alcover, Jul 31 2018 *)

Formula

a(n) = 8*n - a(n-1) - 8 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3 + 2*x + 3*x^2) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
A089911(3*a(n)) = 10. - Reinhard Zumkeller, Jul 05 2013
a(n) = 8*floor((n - 1)/2) + 4 + (-1)^n. - Gary Detlefs, Dec 03 2018
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
a(n) = 4*n - 2 - (-1)^n.
E.g.f.: 3 - (2 - 4*x)*exp(x) - exp(-x). (End)
a(n + 2) = a(n) + 8. - David A. Corneth, Dec 03 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/8) (1/A144981).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/8) (A101464). (End)

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A244628 Composite numbers n such that n == 3 (mod 8) and 2^((n-1)/2) == -1 (mod n).

Original entry on oeis.org

476971, 877099, 1302451, 1325843, 1397419, 1441091, 1507963, 1530787, 1907851, 2004403, 3090091, 3116107, 5256091, 5919187, 7883731, 9371251, 11081459, 11541307, 12263131, 13057787, 13338371, 15976747, 17134043, 18740971, 19404139, 20261251, 21623659, 22075579, 24214051
Offset: 1

Views

Author

Gary Detlefs, Jul 02 2014

Keywords

Comments

This sequence contains the n mod 8 = 3 pseudoprimes to the following modified Fermat primality criterion:
Conjecture 1: if p is a prime congruent to {3,5} mod 8 then 2^((p-1)/2) mod p = p-1.
This conjecture has been tested to 10^8.
This modified primality test has far fewer pseudoprimes than the 2^(n-1) mod n = 1 test and thus has a much higher probability of success. The number of pseudoprimes up to 10^k for the two tests are:
10^3 0 0
10^4 0 2
10^5 0 5
10^6 2 14
10^7 16 48
This sequence appears to be a subset of the composites in A175865.
The n mod 8 = 3 pseudoprimes are much rarer than the n mod 8 = 5 pseudoprimes. There are 16 terms < 10^7. If the additional constraints 3^(n-1) mod n = 1 and 5^(n-1) mod n = 1 are added, no terms remain.
Number of terms < 10^k: 0, 0, 0, 0, 0, 2, 16, 50, 132, ..., . - Robert G. Wilson v, Jul 21 2014
Number of terms < 10^k for k=5..15: 0, 2, 16, 50, 132, 341, 876, 2330, 6234, 16625, 44885. - Jens Kruse Andersen, Jul 27 2014
It appears that the terms of the sequence are also the composite numbers of A294912. - Hilko Koning, Dec 05 2019
Also composite numbers 2k+1 with k odd such that 2k+1 | 2^k+1. - Hilko Koning, Jan 27 2022
Conjecture 1 is true. With p = 2k+1 then 2^k mod (2k+1) == 2k. So 2k+1 | 2k-2^k . Prime numbers 2k+1 == +-3 (mod 8) are the prime numbers such that 2k+1 | 2^k+1 (Comments A007520). A reflection across the x-axis and +1 translation across the y-axis of the graph (2k-2^k) / (2k+1) gives the graph (2^k+1) / (2k+1). So the k values of both 2k+1 | 2k-2^k and 2k+1 | 2^k+1 are identical. - Hilko Koning, Feb 04 2022

Crossrefs

Programs

  • Maple
    for n from 3 to 10^8 by 8 do if Power(2,(n-1)/2) mod n =  n -1 and not isprime(n) then print(n) fi od
  • Mathematica
    fQ[n_] := !PrimeQ@ n && PowerMod[2, (n - 1)/2, n] == n - 1; k = 3; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 8]; lst (* Robert G. Wilson v, Jul 21 2014 *)

A224486 Numbers k such that 2*k+1 divides 2^k+1.

Original entry on oeis.org

1, 2, 5, 6, 9, 14, 18, 21, 26, 29, 30, 33, 41, 50, 53, 54, 65, 69, 74, 78, 81, 86, 89, 90, 98, 105, 113, 114, 125, 134, 138, 141, 146, 153, 158, 165, 173, 174, 186, 189, 194, 198, 209, 210, 221, 230, 233, 245, 249, 254, 261, 270, 273, 278, 281, 285, 293
Offset: 1

Views

Author

Jayanta Basu, Apr 07 2013

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).
Sequence 2*a(n)+1 apparently is A175865 (certainly it is not A003629). - Joerg Arndt, Apr 07 2013

Examples

			5 is in the list since 2*5 + 1 = 11 divides 2^5 + 1 = 33.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Range[300], PowerMod[2, #, 2 # + 1] == 2 # &] (* Amiram Eldar, Oct 13 2020 *)
  • PARI
    for(n=0, 10^3, my(m=2*n+1); if( Mod(2,m)^n==Mod(-1,m), print1(n, ", ") ) ); \\ Joerg Arndt, Apr 08 2013
Showing 1-10 of 27 results. Next