cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A362140 Numbers k in A224486 for which the arithmetic derivative k' (A003415) is also in A224486.

Original entry on oeis.org

2, 5, 6, 9, 14, 18, 29, 33, 41, 53, 54, 65, 69, 89, 113, 134, 141, 158, 173, 198, 209, 221, 233, 249, 278, 281, 293, 326, 329, 338, 393, 473, 506, 509, 545, 581, 593, 614, 629, 641, 653, 713, 729, 749, 761, 809, 846, 905, 950, 953, 965, 986, 1013, 1014, 1026, 1041, 1049
Offset: 1

Views

Author

Marius A. Burtea, May 03 2023

Keywords

Comments

Sophie Germain primes p that are not Lucasian primes (A103579) are terms because p' = 1 = A224486(1).

Examples

			6 = A224486(4) and 6' = 5 = A224486(3), so 6 is a term.
9 = A224486(5) and 9' = 6 = A224486(4), so 9 is a term.
14 = A224486(6) and 14' = 9 = A224486(5), so 14 is a term.
		

Crossrefs

Programs

  • Magma
    czn:=func; f:=func; [n:n in [2..5000]|czn(n) and czn(Floor(f(n)))];
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); curzonQ[n_] := PowerMod[2, n, 2*n + 1] == 2*n; Select[Range[2, 1050], curzonQ[#] && curzonQ[d[#]] &] (* Amiram Eldar, May 05 2023 *)

A222948 Numbers k such that 3*k+1 divides 3^k+1.

Original entry on oeis.org

0, 1, 9, 3825, 6561, 102465, 188505, 190905, 1001385, 1556985, 3427137, 5153577, 5270625, 5347881, 13658225, 14178969, 20867625, 23828049, 27511185, 29400657, 48533625, 80817009, 83406609, 89556105, 108464265, 123395265, 127558881, 130747689, 133861905
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2013

Keywords

Comments

This is to 3 as A224486 is to 2
Displayed terms complete up to 200*10^6. - Joerg Arndt, Apr 08 2013

Examples

			0 is a term because (3^0+1)/(3*0+1) = 2.
1 is a term because (3^1+1)/(3*1+1) = 1.
9 is a term because (3^9+1)/(3*9+1) = 703.
		

Crossrefs

Cf. A224486 (k such that 2*k+1 divides 2^k+1).

Programs

  • PARI
    for(n=0,10^9,if((3^n+1)%(3*n+1)==0,print1(n,", "))); /* Joerg Arndt, Apr 08 2013 */
    /* the following program is significantly faster; it gives terms >=1: */
    
  • PARI
    for(n=0, 10^12, my(m=3*n+1); if( Mod(3,m)^n==Mod(-1,m), print1(n, ", ") ) ); /* Joerg Arndt, Apr 08 2013 */

Formula

{n such that (1+A000244(n))/A016777(n) is an integer}.

Extensions

Terms > 9 from Joerg Arndt, Apr 08 2013

A224499 Numbers k such that if 2*k+1 divides 2^k+1 then 2*(k+1)+1 divides 2^(k+1)+1.

Original entry on oeis.org

1, 5, 29, 53, 89, 113, 173, 209, 329, 413, 509, 545, 713, 725, 809, 833, 893, 965, 1013, 1133, 1169, 1625, 1649, 1685, 1733, 1769, 1925, 2009, 2045, 2129, 2273, 2393, 2465, 2549, 2825, 2933, 3065, 3149, 3329, 3389, 3413, 3473, 3605, 3653, 3665, 3773
Offset: 1

Views

Author

Jayanta Basu, Apr 08 2013

Keywords

Comments

First of a pair of consecutive Curzon numbers, where Curzon numbers are given by A224486.

Crossrefs

Programs

  • Mathematica
    CuQ[n_] := IntegerQ[(2^n + 1)/(2*n + 1)]; Select[Range[4000], CuQ[#] && CuQ[# + 1] &]

A247094 Integers of the form (2^k + 1)/(2k + 1).

Original entry on oeis.org

1, 2, 3, 5, 27, 565, 7085, 48771, 1266205, 9099507, 17602325, 128207979, 26494256091, 11147523830125, 84179432287299, 165269711096165, 281629680514649643, 4246732448623781667, 126774939137440139965, 1925041114036033717685, 14833445639443302757131
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2014

Keywords

Comments

a(A103579(n)) is a subsequence.
Numbers n such that 2n + 1 divides 2^n + 1: 0, 1, 2, 5, 6, 9, 14, 18, 21, 26, 29, 30, 33, 41, 50, 53, ...

Examples

			1 is in this sequence because (2^1 + 1)/(2*1 + 1) = 1,
2 is in this sequence because (2^0 + 1)/(2*0 + 1) = 2,
3 is in this sequence because (2^5 + 1)/(2*5 + 1) = 3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(k=0, 100, t=(2^k + 1)/(2*k + 1); if(type(t)=="t_INT", s=concat(s, t))); s=vecsort(s,,8) \\ Colin Barker, Nov 18 2014

Extensions

a(19) corrected by Colin Barker, Nov 18 2014

A381256 Numbers k such that 5*k+1 divides 5^k+1.

Original entry on oeis.org

0, 1, 625, 57057, 7748433, 30850281, 111494625, 393423745, 499088601, 519341361, 1051107705, 1329416385, 1616038425, 2215448001, 2433936225, 2852972265, 3399207273, 4344683849, 4961725281, 5454760185, 5485530369, 6578054145, 6678031745, 7701979761, 7807302825
Offset: 1

Views

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

Examples

			5*625+1 = 3126 divides 5^625+1.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • PARI
    isok(n) = my(m=5*n+1); Mod(5, m)^n==-1

A381257 Numbers k such that 6*k+1 divides 6^k+1.

Original entry on oeis.org

0, 1, 6, 30, 58, 70, 73, 90, 101, 105, 121, 125, 146, 153, 166, 170, 181, 182, 185, 210, 233, 241, 242, 266, 282, 290, 322, 373, 381, 385, 390, 397, 441, 445, 446, 450, 453, 530, 557, 562, 585, 593, 601, 602, 605, 606, 621, 646, 653, 670, 685, 710, 726, 805, 810, 817, 833, 837, 853, 866
Offset: 1

Views

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

Examples

			6*30+1 = 181 divides 6^30+1 = 221073919720733357899777.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 866], PowerMod[6, #, 6#+1]==6#&]  (* James C. McMahon, Apr 02 2025 *)
  • PARI
    isok(n) = my(m=6*n+1); Mod(6, m)^n==-1

A381258 Numbers k such that 7*k+1 divides 7^k+1.

Original entry on oeis.org

0, 1, 135, 5733, 11229, 42705, 50445, 117649, 131365, 168093, 636405, 699825, 1269495, 2528155, 4226175, 6176709, 6502545, 9365265, 9551115, 13227021, 14464485, 14912625, 20859435, 26903605, 28251265, 30589905, 32660901, 37597329, 41506875, 42766465, 55452075, 56192535, 111898605
Offset: 1

Views

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^7],PowerMod[7,#,7#+1]==7#&] (* James C. McMahon, Mar 05 2025 *)
  • PARI
    isok(n) = my(m=7*n+1); Mod(7, m)^n==-1

A385326 The number of positive k <= 2*n + 1 such that 2*n + 1 divides (2^k + 2*n + 1)^2 - 1.

Original entry on oeis.org

1, 3, 2, 2, 3, 2, 2, 7, 4, 2, 7, 2, 2, 3, 2, 6, 6, 5, 2, 6, 4, 6, 7, 2, 2, 12, 2, 5, 6, 2, 2, 21, 10, 2, 6, 2, 8, 7, 5, 2, 3, 2, 21, 6, 8, 15, 18, 5, 4, 6, 2, 2, 17, 2, 6, 6, 8, 5, 19, 9, 2, 12, 2, 18, 18, 2, 14, 7, 4, 2, 6, 4, 10, 7, 2, 10, 12, 15, 6, 6, 4, 2, 16, 2, 2, 19, 2, 5, 6, 2, 2, 6, 10, 9, 21, 2, 4, 32, 2, 2, 6
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 25 2025

Keywords

Examples

			1 is the term because 2*0 + 1 = 1 is divisor of (2^1 + 2*0 + 1)^2 - 1 = 3^2 - 1 = 8.
		

Crossrefs

Cf. A003462 (numbers m > 0 such that a(m) = 3), A005384 (primes p such that a(p) = 2), A005408 (odd numbers), A076481 (primes q such that a(q) = 3), A081858 (numbers k numbers k >= 0 such that 2k + 1 divides 2^k - 1), A102781 (numbers k such that 2k + 1 divides (2^k + 2*k + 1)^2 - 1), A224486 (numbers k such that 2k + 1 divides 2^k + 1).

Programs

  • Magma
    [#[k: k in [1..2*n+1] | ((2^k+2*n+1)^2 - 1) mod (2*n + 1) eq 0]: n in [0..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Range[2n+1],Divisible[(2^#+2n+1)^2-1,2n+1] &]]; Array[a,101,0] (* Stefano Spezia, Jun 25 2025 *)
  • PARI
    a(n) = sum(k=1, 2*n+1, !Mod((2^k + 2*n + 1)^2 - 1, 2*n + 1)); \\ Michel Marcus, Jun 25 2025
Showing 1-8 of 8 results.