A066587 Duplicate of A047621.
3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
2.414213562373095...
Digits:=100: evalf(1+sqrt(2)); # Wesley Ivan Hurt, Apr 09 2016
RealDigits[1 + Sqrt@ 2, 10, 111] (* Or *) RealDigits[Exp@ ArcSinh@ 1, 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *) Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[ Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]] Circs[4] (* Charles R Greathouse IV, Jan 14 2013 *)
1+sqrt(2) \\ Charles R Greathouse IV, Jan 14 2013
a047522 n = a047522_list !! (n-1) a047522_list = 1 : 7 : map (+ 8) a047522_list -- Reinhard Zumkeller, Jan 07 2012
Select[Range[1, 191, 2], JacobiSymbol[2, # ]==1&]
a(n)=4*n-2+(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
a089911 n = a089911_list !! n a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12) (tail a089911_list) a089911_list -- Reinhard Zumkeller, Jul 01 2013
[Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
The top left corner of the array: 3,5,11,13,19,21,... 7,9,15,17,31,33,... 23,25,47,73,95,...
Triangle begins: 1; 2, 3; 4, 1, 2; 3, 5, 4, 6; 6, 2, 1, 3, 4; 5, 4, 6, 2, 7, 8; 7, 8, 3, 1, 6, 5, 9; 9, 6, 10, 5, 8, 3, 11, 7; 8, 11, 9, 4, 1, 7, 10, 6, 5; 12, 7, 13, 8, 2, 9, 4, 11, 10, 14; 10, 9, 5, 12, 3, 1, 2, 13, 7, 8, 11; 11, 12, 8, 13, 5, 4, 3, 10, 9, 15, 14, 16; 13, 10, 11, 7, 9, 2, 1, 12, 8, 5, 17, 15, 18; ... From _Omar E. Pol_, Jun 07 2017: (Start) The triangle may be reformatted as an isosceles triangle so that the all 1's sequence (A000012) appears in the central column (but note that this is NOT the way the triangle is constructed!): . . 1; . 2, 3; . 4, 1, 2; . 3, 5, 4, 6; . 6, 2, 1, 3, 4; . 5, 4, 6, 2, 7, 8; . 7, 8, 3, 1, 6, 5, 9; . 9, 6, 10, 5, 8, 3, 11, 7; . 8, 11, 9, 4, 1, 7, 10, 6, 5; ... (End)
f[1,1] = 1; (* for 1 < n and 1 <= k <= n *) f[n_,k_] := f[n,k] = Module[{vals=Sort[Join[Map[f[n, #]&, Range[1, k-1]], Map[f[#, k]&, Range[k, n-1]], Map[f[n-k+#, #]&, Range[1, k-1]], Map[f[n-#, k+#]&, Range[1, Floor[(n-k)/2]]]]], c}, c=Complement[Range[1, Last[vals]], vals]; If[c=={}, Last[vals]+1, First[c]]] (* computation of rows 1 ... n of triangle *) a274651[n_] := Prepend[Table[f[i, j], {i, 2, n}, {j, 1, i}], {1}] Flatten[a274651[13]] (* data *) TableForm[a274651[13]] (* triangle *) (* Hartmut F. W. Hoft, Jun 12 2017 *)
G.f. = 1 + x + x^7 + x^10 + x^22 + x^27 + x^45 + x^52 + x^76 + x^85 + x^115 + ... G.f. = q^9 + q^25 + q^121 + q^169 + q^361 + q^441 + q^729 + q^841 + q^1225 + ...
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; Table[SeriesCoefficient[f[q, q^7], {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
{a(n) = issquare(16*n + 9)};
0.765366864730179543456919968060797733522689124971254082867601271255092067920...
RealDigits[Sqrt[2-Sqrt[2]],10,120][[1]] (* Harvey P. Dale, Jun 22 2011 *)
2*sin(Pi/8) \\ Charles R Greathouse IV, Feb 04 2025
polrootsreal(x^4-4*x^2+2)[3] \\ Charles R Greathouse IV, Feb 04 2025
[(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *) LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));
[n : n in [0..150] | n mod 8 in [3, 4, 5, 6]]; // Wesley Ivan Hurt, May 31 2016
A047425:=n->8*floor((n-1)/4)+((n-1) mod 4)+3: seq(A047425(n), n=1..100); # Wesley Ivan Hurt, May 31 2016
Flatten[# + {3, 4, 5, 6} &/@(8*Range[0, 15])] (* Harvey P. Dale, Jun 26 2011 *)
Comments