cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171835 Partial sums of numbers congruent to {3, 4, 5, 6} mod 8 (A047425).

Original entry on oeis.org

3, 7, 12, 18, 29, 41, 54, 68, 87, 107, 128, 150, 177, 205, 234, 264, 299, 335, 372, 410, 453, 497, 542, 588, 639, 691, 744, 798, 857, 917, 978, 1040, 1107, 1175, 1244, 1314, 1389, 1465, 1542, 1620, 1703, 1787, 1872, 1958, 2049, 2141, 2234, 2328, 2427, 2527
Offset: 1

Views

Author

Jaroslav Krizek, Dec 19 2009

Keywords

Crossrefs

Cf. A047425.

Programs

  • Magma
    C := ComplexField(); [Round((4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4): n in [1..100]]; // G. C. Greubel, Sep 04 2018
  • Maple
    A171835:=n->(4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4: seq(A171835(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    CoefficientList[Series[(3 + x + x^2 + x^3 + 2*x^4)/((1 - x)^3*(1 + x + x^2 + x^3)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jun 04 2016 *)
    Table[(4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4, {n, 1, 100}] (* G. C. Greubel, Sep 04 2018 *)
  • PARI
    vector(100, n, (4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4) \\ G. C. Greubel, Sep 04 2018
    

Formula

a(n) = Sum_{i=1..n} A047425(i).
From Wesley Ivan Hurt, Jun 04 2016: (Start)
G.f.: x*(3+x+x^2+x^3+2*x^4)/((1-x)^3*(1+x+x^2+x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.
a(n) = (4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4 where I=sqrt(-1). (End)

A047527 Numbers that are congruent to {0, 1, 2, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 32, 33, 34, 39, 40, 41, 42, 47, 48, 49, 50, 55, 56, 57, 58, 63, 64, 65, 66, 71, 72, 73, 74, 79, 80, 81, 82, 87, 88, 89, 90, 95, 96, 97, 98, 103, 104, 105, 106, 111, 112, 113, 114, 119, 120
Offset: 1

Keywords

Comments

Complement of numbers that are congruent to {3, 4, 5, 6} mod 8 (A047425). - Jaroslav Krizek, Dec 19 2009

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 7]]; // Wesley Ivan Hurt, May 21 2016
  • Maple
    seq(3*n-4*floor((n-2)/4)-6+(-1)^n, n=1..61); # Gary Detlefs, Mar 27 2010
  • Mathematica
    Select[Range[0,200], MemberQ[{0,1,2,7}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,2,7,8}, 200] (* Harvey P. Dale, Sep 05 2014 *)

Formula

a(n) = 3*n-4*floor((n-2)/4)-6+(-1)^n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(1+x+5*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Sep 05 2014
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = (4n-5+i^(2n)+(1+i)*i^(-n)+(1-i)*i^n)/2 where i = sqrt(-1).
a(2n) = A047522(n), a(2n-1) = A047467(n). (End)
Sum_{n>=2} (-1)^n/a(n) = (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/16. - Amiram Eldar, Dec 20 2021
Showing 1-2 of 2 results.